Rayleigh-Taylor-Instabilität

Rayleigh-Taylor-Instabilität

Die Rayleigh–Taylor-Instabilität (RTI) ist eine hydrodynamische Instabilität, die eine Störung an der Grenzfläche zweier unterschiedlich schwerer Flüssigkeiten exponentiell wachsen lässt. Sie ist nach den beiden Physikern Lord Rayleigh und Geoffrey Ingram Taylor benannt.

Beschreibung und Vorkommen

Die RTI ist eine Zwei-Phasen-Instabilität (wie auch die Kelvin-Helmholtz-Instabilität), die auftritt, wenn zwei unterschiedlich dichte Flüssigkeiten gegeneinander beschleunigt werden. Dabei spielt es keine Rolle, welcher Art die Beschleunigung ist. So ist eine schwere Flüssigkeit auf einer leichten im Gravitationsfeld Rayleigh-Taylor-instabil, aber auch die Hülle eines als Supernova explodierenden Sterns, die gegen das dünnere Interstellare Medium beschleunigt wird. Das fransige Erscheinungsbild des Krebsnebels ist beispielsweise Folge der RTI. Typisch für die RTI sind die pilzförmigen Ausstülpungen der Flüssigkeiten ineinander, die zum Beispiel bei der Zugabe von etwas Milch in eine Tasse Tee beobachtet werden können.

Theorie

Aus der linearen Stabilitätsanalyse der Hydrodynamik-Gleichungen erhält man für zwei aneinandergrenzende, unterschiedlich dichte, nichtbewegte Flüssigkeiten folgende Dispersionsrelation:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega= \sqrt{ gk \left( \frac{1-a}{1+a} \right) }.

Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega die Kreisfrequenz der Störung, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k ihre Wellenzahl, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g die Beschleunigung (z.B. gravitativ) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a das Verhältnis der Dichten der Flüssigkeitsschichten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_{oben} / \rho_{unten} .

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a>1 , d.h. die obenliegende Flüssigkeit ist die schwerere, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega imaginär, d.h. eingesetzt in die Wellengleichung der Störung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho \sim e^{i(\mathbf{kx} - \omega t)} erhält man ein exponentielles Anwachsen der Störung. Die Konfiguration ist daher instabil gegen kleinste Störungen. Im umgekehrten Fall, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a<1 (leichte Flüssigkeit auf schwerer) erhält man übrigens die Dispersionsrelation für Oberflächenwellen.

Einzelnachweise

Weblinks