Polyphosphide

Das P42−-Anion besitzt aromatischen Charakter

Polyphosphide sind Polyphosphorverbindungen, bei denen die Phosphoratome als anionische Käfigstrukturen vorliegen (sogenannte Polyanionen). Die Verbindungen sind äußerst instabil und nur bei Temperaturen des flüssigen Ammoniaks (−33,4 °C bis −77,4 °C) stabil und nachweisbar.

Herstellung

Polyphosphide sind aus Diphosphan durch Deprotonierung unter schonender Oxidation darstellbar. Bei der direkten Umsetzung von Metallen mit weißem oder rotem Phosphor bei hohen Temperaturen und unter Luftausschluss entstehen nicht-polymere Phosphide.[1]

Bekannte Polyphosphide

Einige Polyphosphide[2]
Die Struktur des [P7]3− -Anions Das komplexe [P11]3− -Anion
P73− P113−
[P14]4− ist aus zwei verbrückten [P7]3−-Käfigen aufgebaut [P22]4− ist aus zwei verbrückten [P11]3−-Käfigen aufgebaut
P144− P224−
  • P42− besitzt aromatischen Charakter, ist daher ein planarer Ring mit einem P−P−P-Bindungswinkel von ~ 90° (Beispiel Cs2P4 ·2 NH3, P−P-Bindungslängen 215 pm).[2]
  • P5
  • P64−
  • P73− bildet eine Käfigstruktur mit einem gleichseitigen P3-Dreieck als Grundfläche, das von einer trigonalen P4-Pyramide als „Kopf“ überbrückt wird. Dieses Strukturelement kann auch bei höheren Homologen auftreten ([P7]$ \infty $)[2]
  • P113−
  • P144− entspricht einem Dimer aus P73−, wobei zwei der "Kopf"-Phosphoratome verbunden sind.[2]
  • P162−
  • P193−
  • P213−
  • P30N5− [3] Der Phosphidkäfig enthält ein zentrales Stickstoffatom aus dem Lösungsmittel Ammoniak. Das Anionengerüst liegt im Festkoerper als Dimer vor.
  • P224− ist aus zwei verbrückten P113−-Käfigen aufgebaut

Chemische Eigenschaften

Polyphosphide können durch schonende Protonierung in flüssigem Ammoniak in die entsprechenden Hydrogenpolyphosphide überführt werden. Diese stellen damit die Bindeglieder zu den Polyphosphanen dar. Kettenförmige Polyphosphide sind isoelektronisch zu den entsprechenden Polysulfiden und ähneln diesen in ihrer Struktur.[1]

Siehe auch: Polysulfide

Weblinks

Einzelnachweise

  1. 1,0 1,1 Holleman, Wiberg: Inorganic Chemistry. Elsevier, 2001, ISBN 0-12352651-5, S.686–688
  2. 2,0 2,1 2,2 2,3 A.F. Holleman, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 755–757.
  3. H. Graf: Dissertation, Universität Karlsruhe(TH), 1998.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

28.01.2021
Satelliten - Raumfahrt
KI für die Raumfahrt
Ob der eigenwillige HAL 9000 bei Odyssee im Weltraum, der dezent agierende „Computer“ der Enterprise oder die nüchtern-sarkastischen TARS und CASE in Interstellar – in der Science-Fiction wird die Exploration des Weltraums seit jeher von Künstlicher Intelligenz begleitet.
28.01.2021
Optik - Teilchenphysik
Extrem hochfrequentes Zwitschern vermessen
In einem neuen Verfahren vermag ein ultraschneller Plasmaschalter Teile hochfrequenter Lichtblitze zeitlich abzuschneiden.
28.01.2021
Sterne - Exoplaneten
Die Geburtsstätten von Planeten der kleinsten Sterne
Seit kurzem finden Wissenschaftler in den Scheiben um junge Sterne ringförmige Strukturen, die auf Planetenbildung hindeuten.
25.01.2021
Optik - Teilchenphysik
Aus Weiß wird (Extrem)-Ultraviolett
Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben eine neue Methode entwickelt, um die spektrale Breite von extrem-ultraviolettem (XUV) Licht zu modifizieren.
25.01.2021
Astrophysik - Teilchenphysik
Neue Möglichkeiten bei Suche nach kalter dunkler Materie
Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie leicht sie sich in Photonen, die Teilchen des Lichts, verwandeln können.
25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.