Polyelektrolyte

Polyelektrolyte sind wasserlösliche Verbindungen mit großer Kettenlänge (Polymere), die anionische (Polysäuren) oder kationische (Polybasen) dissoziierbare Gruppen tragen.

Die wichtigsten Vertreter der anionischen Polyelektrolyte (Polyanionen) sind:

Zu den kationischen Polyelektrolyten werden gezählt:

Man kann zwischen starken Polyelektrolyten, die eine permanente, vom pH-Wert der Lösung unabhängige Ladung tragen, und schwachen Polyelektrolyten, deren Dissoziationsgrad vom pH-Wert der Lösung abhängt, unterscheiden. Beispiele für starke Polyelektrolyte sind Natrium-Polystyrolsulfonat (anionisch) oder Poly-Diallyldimethyl-ammoniumchlorid (kationisch), Vertreter der schwachen Polyelektrolyte sind Polyacrylsäure (sauer) oder Polyethylenimin (basisch). Die Eigenschaften einer Polyelektrolytlösung werden größtenteils von den abstoßenden Wechselwirkungen der gleichgeladenen Gruppen an der Polymerkette bestimmt.

Ein typisches Beispiel hierfür ist das Viskositätsverhalten von salzfreien Polyelektrolytlösungen. Während die Viskosität neutraler Polymerlösungen mit zunehmender Verdünnung linear abfällt, zeigen Polyelektrolytlösungen einen Anstieg der Viskosität. Man erklärt dies mit einer zunehmenden Versteifung des Polymeren durch die Abstoßung der gleichgeladenen Gruppen, da bei fallender Konzentration die Ionenstärke der Lösung abnimmt und damit die Ladungen schlechter abgeschirmt werden. Dieser Effekt ist als Polyelektrolyteffekt bekannt. Die Ladungsintensität von Polyelektrolyten lässt sich durch Titration (Polyelektrolyttitration) exakt bestimmen. Die Viskosität als makroskopisch zugängliche Eigenschaft von Polymerlösungen wird also bestimmt durch die Konformation der gelösten Polyelektrolytmoleküle. Stark geladene Polyelektrolyte strecken sich in der Lösung aus wohingegen Polyelektrolyte mit verminderter Ladung oder abgeschirmten Ladungen zum Verknäulen neigen. Dieses Verknäulen kann bei schwachen Polyelektrolyten durch den pH-Wert und die Salzkonzentration und bei starken Polyelektrolyten ausschließlich durch die Salzkonzentration kontrolliert werden. Eine wichtige Anwendung dieser Eigenschaften ist die Polyelektrolytadsorption auf Feststoffoberflächen, wie sie z. B. beim Layer-by-layer Verfahren zum Einsatz kommt. Gelöste Polyelektrolyte können auf entgegengesetzt geladenen Oberflächen adsorbieren. Die Adsorption wird unter anderem getrieben durch die elektrostatische Anziehung zwischen den geladenen Monomereinheiten und entgegengesetzt geladenen dissoziierten Oberflächengruppen (z. B. SiO- Gruppen auf Siliziumdioxidoberflächen). Aber auch die Freisetzung von Gegenionen oder die Ausbildung von Wasserstoffbrückenbindungen ermöglichen die Adsorption. Die Konformation des Polyelektrolyten im gelösten Zustand bestimmt die adsorbierte Stoffmenge. Gestreckte Polyelektrolytmoleküle adsorbieren als dünne Filme (0,2–1 nm) auf der Oberfläche wohingegen geknäulte Polyelektrolytmoleküle dickere Schichten ausbilden (1–8 nm).[1][2]

Ein zu den Biopolymeren gehörender, starker Polyelektrolyt ist auch das DNA-Molekül.

Polyelektrolyte unterscheiden sich, neben ihrer Ladungsaktivität, vor allem hinsichtlich ihrer Molaren Masse. Niedermolekulare Polyelektrolyte haben eine Molare Masse bis zu 100.000 g·mol-1, hochmolekulare Polyelektrolyte bis über 10 Millionen. Bei einem theoretischen C-C-Abstand in der Molekülkette von 1,53 Ångström kann die Molekülkette eine Länge von über 15 µm erreichen. Niedermolekulare Polyelektrolyte werden vor allem als Dispergiermittel verwendet, hochmolekulare Polyelektrolyte als Flockungshilfsmittel. In Abhängigkeit von der Molare Masse steigt die Viskosität der Polyelektrolyt-Lösungen. Niedermolekulare Lösungen sind wässrig bis leicht viskos, hochmolekulare Lösungen bereits in einer Konzentration von 0,1 % extrem viskos.

Hochmolekulare Polyelektrolyte lassen sich wegen der extremen Viskosität nicht als wässrige Lösungen herstellen, sondern nur durch „Blockpolymerisation“, wobei als Endprodukte Pulver entstehen, oder durch Emulsionspolymerisation mit flüssigen Emulsionen als Endprodukte.

Literatur

  • Römpp Lexikon Chemie
  • K. Weissermel, H.-J. Arpe: Industrielle organische Chemie. 2. Auflage. Verlag Chemie, Weinheim 1978, ISBN 3-527-25756-X.
  • H. Dautzenberg: Polyelectrolytes: formation, characterization and application. Hanser/Gardner, München etc. 1994, ISBN

3-446-17127-4.

Einzelnachweise

  1. Stability of Aqueous Al203 Suspensions with PMAA Polyelectrolyte, J. Am. Ceram. Soc., 1988, 71 (4), 250–55.
  2. pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes, Macromolecules, 2000, 33 (11), 4213–4219; doi:10.1021/ma991645q.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.