Polyethylenimin

Strukturformel
Strukturformel von unverzweigtem Polyethylenimin
Allgemeines
Name Polyethylenimin
Andere Namen
  • Poly(iminoethylen)
  • PEI
CAS-Nummer 9002-98-6
Monomer
Monomer Ethylenimin
Summenformel C2H5N
Molare Masse 43,0678 g·mol−1
Eigenschaften
Aggregatzustand viskos-flüssig bis fest
Löslichkeit

wasserlöslich

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
06 – Giftig oder sehr giftig

Gefahr

H- und P-Sätze H: 301
P: 301+310 [2]
EU-Gefahrstoffkennzeichnung [1]
Gesundheitsschädlich
Gesundheits-
schädlich
(Xn)
R- und S-Sätze R: 22
S: 36
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Polyethylenimin (Abk.: PEI) ist das Polymerisierungsprodukt seines Monomers Ethylenimin. Es handelt sich um ein stark basisches und verzweigtes Molekül, dessen Aminogruppen bei Zugabe von Wasser protoniert werden. Dementsprechend liegt es in wässriger Lösung als Polykation vor. Da es sich um ein Polymer handelt, ist eine Einstufung der Gefahrenklasse nur für eine bestimmte molare Masse und für eine bestimmte Zusammensetzung (hier Anteil primärer, sekundärer und tertiärer Amine) möglich. Generell gilt, dass je höher die molare Masse ist (und in diesem konkreten Fall, je mehr tertiäres Amin vorliegt), desto weniger reizend und gesundheitsschädlich ist das Produkt.

Lineares Polyethylenimin: Mit p-Toluolsulfonsäuremethylester als Initiator lassen sich 2-alkyl-substituierte 2-Oxazoline zu N-substituierten Polyethylenimin polymerisieren. Nach Verseifung entsteht daraus ein lineares Polyethylenimin [3]

Verwendung

Polyethylenimin wird u. a. als präzipitierendes Agens zur Aufbereitung von Zellextrakten genutzt. Hierbei fällt es auf Grund seiner Ladung in erster Linie die hoch negativ geladenen Nukleinsäuren, aber eventuell auch stark saure Proteine (besitzen viele negative Ladungen in Form von Carboxylatgruppen R–COO auf ihrer Oberfläche) aus. Man kann daher PEI zur Klassentrennung von Nukleinsäuren und Proteinen einsetzen, vor allem weil Nukleinsäuren mit anderen Proteinreinigungsmethoden interferieren könnten. Hochmolekulares PEI wird bei der Papierherstellung als Flockungs- und Retentionsmittel eingesetzt. Auch die Anwendung als Ionenaustauscher in der Wasseraufbereitung ist möglich.[4]

Weitere Einsatzmöglichkeiten bieten sich beispielsweise bei der Transfektion von Nukleinsäuren, wie z. B. Plasmide oder siRNAs in humane oder murine Zellen, sowohl für in vivo als auch in vitro Transfektionen. Die Verwendung dieses synthetischen Polymers ist zudem eine günstige Alternative zu kommerziellen Transfektionsreagentien.[5]

Einzelnachweise

  1. Datenblatt Polyethylenimin bei AlfaAesar, abgerufen am 15. Dezember 2010 (JavaScript erforderlich).
  2. 2,0 2,1 Datenblatt Polyethylenimine, branched bei Sigma-Aldrich, abgerufen am 21. April 2011.
  3. Blandine Brissaul, et.al.: Synthesis of Linear Polyethylenimine Derivatives for DNA Transfection, Bioconjugate Chem. 2003 14, S. 581-587
  4. Utecht, Jens; Rübenacker, Martin; Nilz, Claudia; Rahm, Rainer: Insoluble Polymers which can swell only slightly with modified amino groups, process for their preparation, and their use. European Patent EP0925313, online
  5. Wirth M, Fritsche P, Stojanovic N, Brandl M, Jaeckel S, Schmid RM, Saur D, Schneider G: A Simple and Cost-Effective Method to Transfect Small Interfering RNAs Into Pancreatic Cancer Cell Lines Using Polyethylenimine. Pancreas. 2010 Oct 7. (Epub), PMID 20938367

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
08.01.2021
Optik - Teilchenphysik
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
08.01.2021
Festkörperphysik - Teilchenphysik
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
07.01.2021
Raumfahrt - Festkörperphysik - Quantenoptik
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
07.01.2021
Astrophysik - Relativitätstheorie
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
05.01.2021
Thermodynamik
Weder flüssig noch fest
E
05.01.2021
Quantenoptik
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
22.12.2020
Galaxien - Sterne
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.