Norton-Theorem

Erweiterte Suche

In der Theorie linearer elektrischer Netzwerke besagt das Norton-Theorem, benannt nach Edward Lawry Norton und auch als Mayer-Norton-Theorem bezeichnet, dass jede mögliche Kombination von Spannungsquellen, Stromquellen und Widerständen bezüglich zweier Klemmen elektrisch äquivalent zu einer Parallelschaltung aus einer Stromquelle und einem Widerstand R ist. Diese Ersatzschaltung wird Norton-Äquivalent oder im deutschen Sprachraum Ersatzstromquelle genannt.

Berechnung des Norton-Äquivalents

Jede elektrische Schaltung, die ausschließlich aus Spannungsquellen, Stromquellen und Widerständen besteht, kann in ein Norton-Äquivalent umgewandelt werden.

Das Norton-Äquivalent besteht aus einem Widerstand RNo und einer Stromquelle INo. Um die zwei Unbekannten RNo und INo zu bestimmen, benötigt man zwei Gleichungen. Diese Gleichungen können auf verschiedene Art und Weise erstellt werden. Meistens gebraucht man jedoch folgende:

  • Den Ausgangsstrom IAB bei Kurzschluss bestimmen. Dieser Kurzschlussstrom ist der Norton-Äquivalentstrom INo.

Um den Norton-Äquivalentwiderstand RNo zu bestimmen, gibt es verschiedene Methoden:

  • Man ersetzt alle Spannungsquellen durch Kurzschlüsse und streicht alle Stromquellen (d.h. man ersetzt sie durch Open Circuits). Dann berechnet man den Ersatzwiderstand. Dieser ist gleich dem Norton-Äquivalentwiderstand.
  • Wenn man die Leerlaufspannung UAB kennt, benutzt man das ohmsche Gesetz, um RNo zu bestimmen:
$ R_\mathrm{No} = {U_\mathrm{AB} \over I_\mathrm{No}} \, $

Der Beweis des Norton-Theorems basiert auf dem Superpositionsprinzip.

Umwandlung zwischen Norton- und Thévenin-Äquivalent

Norton-Thévenin-Äquivalent-Umwandlung

Ein Norton-Äquivalent kann in ein Thévenin-Äquivalent umgewandelt werden anhand folgender Gleichungen:

$ R_{Th} = R_{No} \, $
$ U_{Th} = I_{No} R_{No} \, $

Frage zum Verständnis

Frage: »In zwei schwarzen Kistchen seien eine Stromquelle mit Parallelwiderstand und eine Spannungsquelle mit Serienwiderstand verborgen, so dass obige Gleichungen erfüllt sind. Kann man von außen feststellen, in welchem schwarzen Kistchen sich die Norton-Schaltung befindet?«

Antwort: Ja! Das Kistchen mit der Norton-Schaltung ist wärmer, denn es nimmt dauernd die Leistung $ P_{No}=I_{No}^{2} R_{No} $ auf. Die Thévenin-Schaltung nimmt keine Leistung auf und wird deshalb nicht wärmer. Die Äquivalenz besteht also nur bezüglich der Ausgangsklemmen. Belastet man beide Kistchen jedoch mit einem Kurzschluss, so nimmt das Kistchen mit der Thévenin-Schaltung die Leistung $ P_{Th}=\frac{U_{Th}^{2}}{R_{Th}} $ auf, da nun Strom durch den Thévenin-Widerstand fließt. Die Norton-Schaltung dagegen nimmt keine Leistung mehr auf, da der Norton-Widerstand kurzgeschlossen ist. Die Leistung, die die Norton-Schaltung im offenen Fall aufnimmt, ist gleich groß, wie die Leistung, die von der Thévenin-Schaltung im kurzgeschlossen Fall aufgenommen wird.

Diese Frage bewährt sich sehr, um in Kursen die Grenzen der Theorie von Norton- und Thévenin-Äquivalent zu verdeutlichen.

Erweiterung für Wechselstrom

Das Norton-Theorem kann auch auf harmonische Wechselstromsysteme verallgemeinert werden, indem Impedanzen statt der ohmschen Widerstände verwendet werden.

Geschichte

Das Norton-Theorem ist eine Erweiterung des Thévenin-Theorems. Es wurde 1926 gleichzeitig und unabhängig durch Hans Ferdinand Mayer (1895–1980) (bei Siemens & Halske) und Edward Lawry Norton (1898–1983) (bei Bell Labs) entdeckt. Mayer veröffentlichte seine Entdeckung in der Zeitschrift Telegraphen- und Fernsprech-Technik, Norton publizierte seine Entdeckung in einem internen Arbeitsbericht der Bell Labs. Dieses Theorem wird als Vereinfachungstechnik in der Schaltkreisanalyse verwendet.

Literatur

  •  Karl Küpfmüller, W. Mathis, A. Reibiger: Theoretische Elektrotechnik. Springer, Berlin, Heidelberg 2006, ISBN 3-540-29290-X.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.10.2021
Planeten | Elektrodynamik | Thermodynamik
Neues von den ungewöhnlichen Magnetfeldern von Uranus und Neptun
Tausende Grad heißes Eis - Wie es bei millionenfachem Atmosphärendruck entsteht und warum dieses leitende superionische Eis bei der Erklärung der ungewöhnlichen Magnetfelder der Gasplaneten Uranus und Neptun hilft.
14.10.2021
Elektrodynamik | Quantenphysik
Exotische Magnetzustände in kleinster Dimension
Einem internationalen Forscherteam gelang es erstmals, Quanten-Spinketten aus Kohlenstoff zu bauen.
15.10.2021
Sterne
Magentische Kräfte der Sonne: schnellere geladene Teilchen beobachtet
Protuberanzen schweben als riesige Wolken über der Sonne, gehalten von einem Stützgerüst aus magnetischen Kraftlinien, deren Fußpunkte in tiefen Sonnenschichten verankert sind.
14.10.2021
Planeten | Sterne
Der Planet fällt nicht weit vom Stern
Ein Zusammenhang zwischen der Zusammensetzung von Planeten und ihrem jeweiligen Wirtsstern wurde in der Astronomie schon lange vermutet.
12.10.2021
Kometen und Asteroiden
Lerne die 42 kennen: Einige der größten Asteroiden fotografiert
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile haben Astronom:innen 42 der größten Objekte im Asteroidengürtel zwischen Mars und Jupiter abgelichtet.
06.10.2021
Elektrodynamik | Festkörperphysik
Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
05.10.2021
Festkörperphysik | Quantenphysik
Neue Art von Magnetismus in Kult-Material entdeckt
Ein internationales Wissenschaftsteam macht eine wegweisende Entdeckung in Strontiumruthenat.
30.09.2021
Kometen_und_Asteroiden | Planeten
Bombardement von Planeten im frühen Sonnensystem
Vesta, der größte Asteroid unseres Sonnensystems, war sehr viel früher einer umfangreichen Einschlagserie großer Gesteinskörper ausgesetzt als bislang angenommen.
30.09.2021
Plasmaphysik | Teilchenphysik
Strahldiagnostik für zukünftige Beschleuniger im Tischformat
Seit Jahrzehnten wurden Teilchenbeschleuniger immer größer - Seit einigen Jahren gibt es jedoch eine Alternative: „Teilchenbeschleuniger im Tischformat“, die auf der Laseranregung von Kielwellen in Plasmen (laser wakefield) basieren.
24.09.2021
Quantenoptik
Winzige Laser, die wie einer zusammenwirken
Israelische und deutsche Forscher:innen des Exzellenzclusters ct.