Nadroparin

Erweiterte Suche

Strukturformel
Gemisch aus Glykosaminglykanen unterschiedlicher Kettenlänge
Allgemeines
Name Nadroparin
CAS-Nummer keine, da Gemisch
ATC-Code

B01AB06

Arzneistoffangaben
Wirkstoffklasse

Antithrombotikum, niedermolekulares Heparin

Wirkmechanismus

hemmt antithrombinabhängig die Gerinnungsfaktoren Xa und in geringerem Ausmaß Faktor IIa (Thrombin).

Verschreibungspflichtig: ja
Monomer
Monomer da Heparin abwechselnd D-Glucosamin und D-Glucuronsäure oder L-Iduronsäure
Summenformel keine, da Gemisch
Molare Masse ca. 4500 g·mol−1
Eigenschaften
Löslichkeit

wasserlöslich

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
EU-Gefahrstoffkennzeichnung [2]
keine Einstufung verfügbar
R- und S-Sätze R: nicht bekannt
S: nicht bekannt
Bitte beachten Sie die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Nadroparin (Handelsname Fraxiparin®, Hersteller: GlaxoSmithKline) ist ein Arzneistoff aus der Gruppe der niedermolekularen Heparine, der zur Blutgerinnungshemmung eingesetzt wird.

Klinische Angaben

Anwendungsgebiete (Indikationen)

Nadroparin wird zur Vorbeugung gegen Venenthrombosen durch Operationen – auch größeren orthopädischen Eingriffen (z.B. Hüftoperationen) – und zur Behandlung von tiefen Venenthrombosen verwendet. Ferner wird Nadroparin zur Gerinnungshemmung während der Blutwäsche (Hämodialyse und Hämofiltration) im extrakorporalen Kreislauf eingesetzt.[3]

Dosierung, Art und Dauer der Anwendung

Nadroparin wird zur Vorbeugung und Behandlung tiefer Venenthrombosen als Calcium-Salz in Form einer Injektionslösung subkutan injiziert. Die körpergewichtangepasste Dosierung und die Behandlungdauer richten sich nach dem Anwendungsgebiet. Je nachdem werden bis zu 19.000 I.E. anti-Xa Nadroparin-Calcium täglich in ein bis zwei Tagesgaben über fünf oder mehr Tage – so lange wie ein Thromboserisiko besteht – gespritzt.[3]

Wegen der Gefahr einer Heparin-induzierten Thrombozytopenie (HIT) muss die Zahl der Thrombozyten (Blutplättchen) während der Behandlung regelmäßig kontrolliert werden.Gelegentlich kann zu Beginn der Behandlung mit Nadroparin eine leichte, vorübergehende Thrombozytopenie (Typ I) auftreten. Da sie im Allgemeinen nicht zu Komplikationen führt, kann die Behandlung fortgeführt werden. Beim Auftreten einer schweren Thrombozytopenie (Typ II) hingegen muss die Behandlung mit Nadroparin sofort abgebrochen werden, auch andere Heparine können dann nicht zur Hemmung der Blutgerinnung verwendet werden.[3]

Zur Gerinnungshemmung während der Hämodialyse und Hämofiltration muss die Dosis für jeden Patienten individuell eingestellt werden.

Gegenanzeigen (Kontraindikationen)

Nadroparin darf, wie andere niedermolekulare Heparine auch, nicht angewendet werden bei Überempfindlichkeit gegen den Wirkstoff, bei Gerinnungsstöungen wie etwa dem Vorliegen einer verringerten Anzahl von Blutplättchen (Thrombozytopenie) oder einem Mangel an Gerinnungsfaktoren, bei Blutungsneigung etwa durch Geschwüre oder andere Organveränderungen und durch Verletzungen, sowie bei schwerer Beeinträchtigung der Leber- und Nierenfunktion. Bei Neugeborenen, insbesondere unreifen Frühgeborenen, darf Nadroparin ebenfalls nicht angewendet werden.[3]

Nebenwirkungen

Die häufigsten Nebenwirkungen sind kleine Blutergüsse (Hämatome) an der Einstichstelle, Blutungskomplikationen, sowie ein Anstieg der Kaliumkonzentration und bestimmter Leberenzyme im Serum.[3]

Wirkungsweise

Niedermolekulare Heparine unterschieden sich in der Wirkung vom Standard-Heparin hauptsächlich dadurch, dass sie in der Gerinnungskaskade vorwiegend den Faktor-Xa hemmen. Auch ist ihre Halbwertzeit länger als die des Standard-Heparins. Für Nadroparin beträgt sie ca 3,5 Stunden nach subkutaner Injektion. Nadroparin hemmt auch in geringem Ausmaß das Thrombin.[3]

Die Wirkstärke von Nadroparin wird anhand der Anti-Faktor-Xa-Bestimmung ermittelt und in Anti-Xa Internationalen Einheiten (IE) angegeben.

Wirksamkeit/Verträglichkeit

Die einmal tägliche Injektion von 2.850 I.E. anti-Xa Nadroparin verhinderte in der Allgemeinchirurgie bei Patienten mit mittlerem oder hohem Risiko signifikant mehr Beinthrombosen und Lungenembolien als die dreimal tägliche Injektion von Standard-Heparin (5.000 I.E.).[4] Die zweimal tägliche Gabe von körpergewichtsadaptierten Nadroparin ist mindestens so wirksam und sicher wie die Dauerinfusion von aPTT-gesteuertem Standard-Heparin und ermöglicht eine ambulante Behandlung.[5] Thrombozytopenien treten unter Nadroparin signifikant seltener auf als unter Standardheparin.[6]

Weitere Informationen

Nadroparin wird aus Heparin aus der Darmschleimhaut von Schweinen gewonnen. Die langkettigen Moleküle werden durch Umsetzung mit salpetriger Säure depolymerisiert (=aufgespalten) und fraktioniert. Die mittlere relative Molekülmasse beträgt 3600 bis 5000, der Grad der Sulfatierung je Disaccharid-Einheit beträgt circa 2. Das Verhältnis Anti-Faktor-Xa-Aktivität zu Anti-Faktor-IIa-Aktivität liegt zwischen 2,5 und 4.[7]

Einzelnachweise

  1. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  2. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  3. 3,0 3,1 3,2 3,3 3,4 3,5 Fachinformation Fraxiparin (Stand Dezember 2006)
  4. European Fraxiparin Study et al. Br J Surg (1988) 75: 1058-1063
  5. Koopman et al. New Engl J Med (1996) 334:682-687
  6. Hankowitz et al. Ann of Hematology (1999) 78:P118
  7. Monografie „Nadroparin-Calcium“ 5.0/1134, Europäisches Arzneibuch 5.0
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?