Itoigawait

Erweiterte Suche

Itoigawait
Andere Namen
  • IMA 1998-034
Chemische Formel

SrAl2[(OH)2|Si2O7] • H2O[1]

Mineralklasse Silikate und Germanate
9.BE.05 (8. Auflage: VIII/C.10) nach Strunz
56.02.03.05 nach Dana
Kristallsystem orthorhombisch
Kristallklasse; Symbol nach Hermann-Mauguin orthorhombisch-dipyramidal 2/m 2/m 2/m[2]
Farbe Blau, Farblos in dünnen Schichten
Strichfarbe Weiß
Mohshärte 5 bis 5,5
Dichte (g/cm3) berechnet: 3,37
Glanz Glasglanz
Transparenz durchsichtig
Bruch
Spaltbarkeit gut
Habitus
Kristalloptik
Brechungsindex nα = 1,664 ; nβ
Doppelbrechung
(optischer Charakter)
δ = 0,024[3] ; zweiachsig positiv
Optischer Achsenwinkel 2V = 81°

Itoigawait ist ein sehr selten vorkommendes Mineral aus der Mineralklasse der „Silikate und Germanate“. Es kristallisiert im orthorhombischen Kristallsystem mit der chemischen Zusammensetzung SrAl2[(OH)2|Si2O7] • H2O[1] und konnte bisher nur in Form mikrokristalliner Mineral-Aggregate von blauer Farbe bei weißer Strichfarbe gefunden werden.

Etymologie und Geschichte

Erstmals entdeckt wurde Itoigawait 1996 als bläuliches Mineral auf lavendelfarbenem Jadeit am Geröll-Strand Oyashirazu bei Itoigawa in der japanischen Präfektur Niigata.

Analysiert und beschrieben wurde das Mineral durch H. Miyajima, S. Matsubara, R. Miyawaki und K. Ito, die es nach seiner Typlokalität Itoigawa benannten. Die Forschergruppe reichte ihre Untersuchungsergebnisse und den gewählten Namen 1998 zur Prüfung bei der International Mineralogical Association (IMA) ein. Der Antrag erhielt die Eingangs-Nummer IMA 1998-034 und noch im selben Jahr wurde der Status als eigenständiges Mineral bestätigt. Veröffentlicht wurden die Untersuchungsergebnisse und der anerkannte Name im Dezember 1999 im Mineralogical Magazine.

Klassifikation

In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Itoigawait zur Mineralklasse der „Silikate und Germanate“ und dort zur Abteilung der „Gruppensilikate (Sorosilikate)“, wo er zusammen mit Hennomartinit, Ilvait, Lawsonit und Noelbensonit eine eigenständige Gruppe bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz'schen Mineralsystematik ordnet den Itoigawait ebenfalls in die Klasse der „Silikate und Germanate“ und dort in die Abteilung der „Gruppensilikate (Sorosilikate)“ ein. Diese Abteilung ist allerdings weiter unterteilt nach der Art und Verknüpfung der Silikatgruppen und der Koordination der beteiligten Kationen, so dass das Mineral entsprechend seiner Kristallstruktur in der Unterabteilung „Si2O7 Gruppen mit zusätzlichen Anionen; Kationen in oktaedrischer [6] und größerer Koordination“ zu finden ist, wo es zusammen mit Hennomartinit, Lawsonit und Noelbensonit die „Lawsonitgruppe“ mit der System-Nr. 9.BE.05 bildet.

Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Itoigawait in die Klasse der „Silikate und Germanate“, dort allerdings in die bereits feiner unterteilte Abteilung der „Gruppensilikate: Si2O7-Gruppen und O, OH, F und H2O“ ein. Hier ist er zusammen mit Lawsonit, Hennomartinit, Ilvait, Noelbensonit und Manganilvait in der „Lawsonit-Ilvait-Gruppe“ mit der System-Nr. 56.02.03 innerhalb der Unterabteilung der „Gruppensilikate: Si2O7-Gruppen und O, OH, F und H2O mit Kationen in [4] und/oder >[4]-Koordination“ zu finden.


Bildung und Fundorte

Itoigawait bildet sich zusammen mit Jadeit in dünnen Adern von Serpentinitgesteinen.

Bisher (Stand: 2011) konnte Itoigawait nur an seiner Typlokalität Oyashirazu nachgewiesen werden.[3]

Kristallstruktur

Itoigawait kristallisiert orthorhombisch in der Raumgruppe Cmcm (Raumgruppen-Nr. 63) mit den Gitterparametern a = 6,03 Å; b = 8,94 Å und c = 13,22 Å sowie 4 Formeleinheiten pro Elementarzelle.[1]

Siehe auch

Einzelnachweise

  1. 1,0 1,1 1,2  Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 574.
  2. Webmineral - Itoigawaite (englisch)
  3. 3,0 3,1 Mindat - Itoigawaite (englisch)

Literatur

Weblinks

  • Mineralienatlas:Itoigawait (Wiki)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.11.2021
Sonnensysteme | Exoplaneten
Wenig Kollisionsgefahr im Planetensystem TRAPPIST-1
Sieben erdgrosse Planeten umkreisen den Stern TRAPPIST-1 in nahezu perfekter Harmonie.
23.11.2021
Optik
„Maßgeschneidertes“ Licht
Ein Forscherteam entwickelt erstmals ein Lichtfeld, welches die Struktur des vierdimensionalen Raums widerspiegelt.
15.11.2021
Schwarze Löcher
Woher kommt das Gold?
Wie werden chemische Elemente in unserem Universum produziert?
08.11.2021
Teilchenphysik
Neue Einblicke in die Struktur des Neutrons
Sämtliche bekannte Atomkerne und damit fast die gesamte sichtbare Materie bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Bausteine der Natur noch nicht verstanden.
08.11.2021
Physikdidaktik | Strömungsmechanik
Warum Teekannen immer tropfen
Strömungsmechanische Analysen der TU Wien beantworten eine alte Frage: Wie kommt es zum sogenannten „Teapot-Effekt“?
05.11.2021
Teilchenphysik | Thermodynamik
Elektronen-Familie erzeugt bisher unbekannten Aggregatzustand
Ein internationales Forschungsteam des Exzellenzclusters ct.
04.11.2021
Galaxien | Schwarze Löcher
Jet der Riesengalaxie M87
In verschiedenen Wellenlängen lässt sich ein gigantischer Teilchenstrahl beobachten, der von der Riesengalaxie M87 ausgestoßen wird.
04.11.2021
Galaxien
Am weitesten entfernter Nachweis von Fluor in sternbildender Galaxie
Eine neue Entdeckung gibt Aufschluss darüber, wie Fluor – ein Element, das in unseren Knochen und Zähnen als Fluorid vorkommt – im Universum entsteht.
02.11.2021
Monde | Kometen und Asteroiden
Planetologen erforschen schweres Bombardement des Mondes vor 3,9 Milliarden Jahren
Der Mond war vor 3,9 Milliarden Jahren einem schweren Bombardement mit Asteroiden ausgesetzt.
29.11.2021
Optik | Quantenoptik
Nur durch Billiardstel Sekunden getrennt
Ultrakurze Lichtblitze dauern weniger als eine Billiardstel Sekunde und haben eine wachsende technologische Bedeutung.