Helizität

Helizität

Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn Du Dich mit dem Thema auskennst, bist Du herzlich eingeladen, Dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Die Helizität $ h\!\, $ (griechisch ἕλιξ, helix „das Gewundene“) ist in der Teilchenphysik die Komponente des Spins eines Teilchens, die in Richtung seines Impulses, d. h. in Bewegungsrichtung, weist. Zur Bedeutung in der Chemie siehe: Helizität in der Chemie.

Definitionen

Die Helizität ist definiert als

$ h={\vec {S}}\cdot {\hat {p}} $,

wobei $ {\vec {S}} $ den Vektor des Spins und $ {\hat {p}}={\vec {p}}/|{\vec {p}}| $ die Impulsrichtung bezeichnet.

  • Für ein massebehaftetes Teilchen mit Gesamtspin S kann die Helizität 2S + 1 verschiedene Eigenwerte −S, −S+1, …, 0 (nur für ganzzahlige S), …, S−1, S annehmen (vgl. Multiplizität).
  • Für ein masseloses Teilchen, das sich stets mit Lichtgeschwindigkeit bewegt, sind nur die beiden Werte −S und +S möglich; die Helizität fällt in diesem Fall bis auf einen Faktor S mit der Chiralität zusammen; für ein nahezu masseloses Teilchen (Bewegung mit nahezu Lichtgeschwindigkeit) gilt dies näherungsweise.

Manchmal wird die Helizität auch als die Komponente des Gesamtdrehimpulses $ {\vec {J}} $ in Impulsrichtung definiert:

$ h\,=\,{\vec {J}}\cdot {\hat {p}} $.

Die beiden Definitionen sind äquivalent, weil der Bahndrehimpuls $ {\vec {L}} $, der Spin und Gesamtdrehimpuls verknüpft, immer senkrecht auf dem Impulsvektor steht und daher nicht zum Skalarprodukt beitragen kann ($ {\vec {L}}\cdot {\hat {p}}=0 $).

Anschauliche Beschreibung

L: linkshändige Schraubenlinie (Helix),
R: rechtshändige Schraubenlinie

Anschaulich definiert die Helizität den Drehsinn oder die Händigkeit eines Teilchens. Betrachtet man den Begriff im Sinne der klassischen Mechanik, so bedeutet positive Helizität, dass die Drehachse des Teilchens nach „vorne“, d. h. in Bewegungsrichtung, geneigt ist. Die Richtung der Drehachse ist dabei so festgelegt, dass die Drehung des Teilchens in Richtung der Finger der rechten Hand erfolgt, wenn der Daumen derselben Hand in Richtung der Drehachse zeigt. Betrachtete man die Bahn eines Punktes auf der Oberfläche eines solchen klassischen Teilchens, durchliefe dieser eine „rechtshändige Schraubenlinie“, wie man sie vom Gewinde einer üblichen Schraube kennt. Teilchen mit positiver Helizität bezeichnet man daher als rechtshändig, solche mit negativer Helizität entsprechend als linkshändig.

Spinrichtung
überwiegend geneigt...
Helizität Schraubenlinie
(in Abb.)
gilt unter schwacher Wechselwirkung
für...[Anm. 1]
in Impuls-/
Bewegungsrichtung
positiv rechtshändig
(R)
masselose Antiteilchen
entgegen Impuls-/
Bewegungsrichtung
negativ linkshändig
(L)
masselose Teilchen
  1. s.u. Helizität und Quantentheorie

Hierbei ist allerdings zu beachten, dass es sich um Analogiebetrachtungen zur Veranschaulichung handelt, die die wahre quantenmechanische Natur der Teilchen nicht vollständig wiedergeben.

Helizität und Relativitätstheorie

Im Rahmen der Relativitätstheorie ist die Helizität nur für masselose Teilchen (die sich stets mit Lichtgeschwindigkeit bewegen) eindeutig bestimmt. Für alle massebehafteten Teilchen dagegen lässt sich immer ein Bezugssystem wählen, das das Teilchen „überholt“, wodurch sich die Richtung seines Impulses und damit seine Helizität umkehrt.

Helizität und Quantentheorie

In der Quantentheorie verwendet man die Lorentz-invariante Größe der Chiralität. Den geladenen Strömen der schwachen Wechselwirkung (Austausch von W-Bosonen) unterliegen nur Teilchen mit linkshändiger Chiralität und ihre Antiteilchen mit rechtshändiger Chiralität.

Da für Neutrinos, die nur der schwachen Wechselwirkung unterliegen, experimentell lange keine Ruhemasse nachgewiesen werden konnte, weil sie nur schwach mit Materie wechselwirken, nahm man an, dass es nur linkshändige Neutrinos und rechtshändige Antineutrinos gibt. Aus der Entdeckung der Neutrinooszillationen folgte aber, dass Neutrinos eine nicht verschwindende Ruhemasse besitzen müssen. Das bedeutet, dass Neutrinos sich nicht ganz mit Lichtgeschwindigkeit bewegen. Daraus folgt nach aktuellem physikalischen Wissen, dass es auch rechtshändige Neutrinos und linkshändige Antineutrinos geben muss.

Helizität in der Chemie

Auf molekularer Ebene gibt es in der Chemie bestimmte Substanzen, bei denen es einander isomere Verknüpfungen gibt, z. B. bei den Helicenen.[1] So verhalten sich beispielsweise (P)-Heptahelicen und (M)-Heptahelicen spiegelbildlich. Beide Moleküle besitzen die gleiche Anzahl an Kohlenstoff- und Wasserstoffatomen und sind ausschließlich aus annelierten Benzol-Ringen aufgebaut, dennoch sind (P)-Heptahelicen und (M)-Heptahelicen verschieden und lassen sich nicht zur Deckung bringen, sie sind chiral. Dies findet seine Entsprechung in der Architektur (siehe Abbildungen).

Literatur

  • Bogdan Povh et al.: Teilchen und Kerne. 6. Auflage. Springer-Verlag, 2004, ISBN 3-540-21065-2.
  • Walter Greiner und Berndt Müller: Theoretische Physik, Bd. 8, Eichtheorie der schwachen Wechselwirkung. Harri Deutsch, 1995, ISBN 3-8171-1427-3.
  • James Daniel Bjorken und Sidney Drell: Relativistische Quantenmechanik, Bibliographisches Institut, Mannheim 1990, ISBN 3-411-00098-8. (BI Hochschultaschenbücher; 98/98a).

Einzelnachweise

  1. Ernest L. Eliel, Samuel H. Wilen:Stereochemistry of Organic Compounds, John Wiles & Sons, 1994, S. 1163-1166, ISBN 0-471-05446-1.