Dichte

Dichte

(Weitergeleitet von Gesteinsdichte)
Dieser Artikel beschreibt die physikalische Größenart Dichte. Für weitere Bedeutungen siehe Dichte (Begriffsklärung).
Physikalische Größe
Name Massendichte
Formelzeichen der Größe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho
Größen- und
Einheitensystem
Einheit Dimension
SI kg·m−3 M·L−3
Siehe auch: Wichte (spezifisches Gewicht),
relative Dichte (spezifische Dichte),
spezifisches Volumen

Die Dichte eines Körpers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho (Rho), zur besseren Unterscheidung von anderen volumenbezogenen Größen wie Energie- oder Ladungsdichte auch Massendichte genannt, ist der Bruch aus seiner Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,m (im Zähler) und seinem Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \,V (im Nenner), also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho=\frac{m}{V} , und somit eine Quotientengröße im Sinne von DIN 1313. Sie wird oft in Gramm pro Kubikzentimeter = Kilogramm pro Liter = Tonnen pro Kubikmeter angegeben; seltener wird die ohne Vorsätze gebildete SI-Einheit Kilogramm pro Kubikmeter verwendet. Die Dichte ist eine für das Material des Körpers charakteristische und von seiner Form und Größe unabhängige Eigenschaft.

Im Allgemeinen (ohne Dichteanomalie) dehnen sich feste und flüssige Stoffe mit steigender Temperatur aus, sodass ihre Dichte dabei sinkt; gasförmige sogar noch stärker, wenn sie sich etwa gegen konstanten Außendruck ausdehnen können und nicht in einem starren Gefäß eingeschlossen sind.

Mit -dichte zusammengesetzte Wörter bezeichnen auch andere Größen, die auf das Volumen, manchmal aber auch auf eine Fläche, eine Länge, ein Frequenzintervall oder Anderes bezogen werden (Beispiele unter Andere Dichtebegriffe unten).

Abgrenzung zu anderen Begriffen

  • Die Dichte (Masse/Volumen) darf nicht mit dem spezifischen Gewicht (Wichte) verwechselt werden. Während bei der Dichte die Masse im Verhältnis zum Volumen steht, steht beim spezifischen Gewicht an Stelle der Masse die Gewichtskraft (Kraft/Volumen).
  • Die relative Dichte ist das Verhältnis der Dichte zur Dichte eines Normals, also eine dimensionslose Größe.

Definiert werden diese Unterschiede in der DIN 1306 Dichte; Begriffe, Angaben.

Dichte von Lösungen

Die Summe der Massenkonzentrationen der Bestandteile einer Lösung ergibt die Dichte der Lösung, indem man die Summe der Massen der Bestandteile durch das Volumen der Lösung teilt.

$ \rho ={\frac {1}{V}}\sum _{i}m_{i}={\frac {\sum _{i}\rho _{i}V_{i}}{V}}\, $

Dabei sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_i die einzelnen Teilmassen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_i die einzelnen Teilvolumina und V das Gesamtvolumen.

Spezielle Dichtebegriffe in der Technik

  • Reindichte ρ0, absolute Dichte, wahre Dichte, Skelettdichte (Volumen ohne Hohlräume), vgl. Festmeter
  • Rohdichte ρ, geometrische Dichte, Raumdichte, scheinbare Dichte (eines porösen Körpers, Hohlräume inklusive), vgl. Raummeter
  • Scherbenrohdichte ρ, scheinbare Dichte (inkl. Poren, excl. Hohlräume)
  • Schüttdichte ρSch eines Gemenges mit einem Fluid inklusive Luft
    • Korndichte, Hektolitergewicht (Logistik)
  • Potentielle Dichte σθ (Ozeanographie)
  • Dichten kompressibler Materialien: Pressdichte, Klopfdichte, Fülldichte, Stopfdichte, Raumdichte von Asphalt
  • Sinterdichte von Sinterwerkstoffen

Als dimensionslose Vergleichsgröße:

Andere Dichtebegriffe

Volumenbezogene Größen

Größen pro Flächeneinheit

(Empfohlene Bezeichnung nach DIN 5485: -flächendichte oder -bedeckung)

Größen pro Längeneinheit

(Empfohlene Bezeichnung nach DIN 5485: -längendichte, -belag oder -behang)

  • Linienladungsdichte
  • Kapazitätsbelag
  • Induktivitätsbelag

Ortsabhängige Dichte

Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dm werde die Masse in einem gewissen Kontrollvolumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dV bezeichnet. Bei stetig verteilter Masse kann man einen Grenzübergang durchführen; d. h. man lässt das Kontrollvolumen immer kleiner werden und kann so die Massendichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho(\mathbf x) durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dm = \rho(\mathbf x) \,\mathrm dV

definieren. Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho: \R^3 \to \R wird auch als Dichtefeld bezeichnet.

Für einen homogenen Körper, dessen Massendichte in seinem Inneren überall den Wert $ \rho _{0} $ hat, ist die Gesamtmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m das Produkt von Dichte und Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V , d.h. es gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m = \rho_0\,V\,.

Bei inhomogenen Körpern ist die Gesamtmasse allgemeiner das Volumenintegral über die Massendichte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m = \int_V \rho(\mathbf x)\,\mathrm dV\,.

Die Dichte ergibt sich aus den Massen der Atome, aus denen das Material besteht und aus ihren Abständen. In homogenem Material, zum Beispiel in einem Kristall, ist die Dichte überall gleich. Sie ändert sich normalerweise mit der Temperatur und bei kompressiblen Materialien (wie z. B. Gasen) auch mit dem Druck. Daher ist beispielsweise die Dichte der Atmosphäre ortsabhängig und nimmt mit der Höhe ab.

Der Kehrwert der Dichte wird spezifisches Volumen genannt und spielt vor allem in der Thermodynamik der Gase und Dämpfe eine Rolle. Das Verhältnis der Dichte eines Stoffes zur Dichte im Normzustand wird als relative Dichte bezeichnet.

In der ersten Ausgabe der DIN 1306 Dichte und Wichte; Begriffe vom August 1938 wurde die Dichte im heutigen Sinn als mittlere Dichte genormt und die ortsabhängige Dichte in einem Punkt als Dichte schlechthin definiert: „Die Dichte (ohne den Zusatz ‚mittlere‘) in einem Punkte eines Körpers ist der Grenzwert, dem die mittlere Dichte in einem den Punkt enthaltenden Volumen zustrebt, wenn man dieses so weit verkleinert denkt, dass es klein wird gegen die Abmessungen des Körpers, aber noch groß bleibt gegen die Gefügeeinheiten seines Stoffs.“ In der Ausgabe vom August 1958 wurde dann die mittlere Dichte in Dichte umbenannt mit der Erläuterung: „Masse, Gewicht und Volumen werden an einem Körper bestimmt, dessen Abmessungen groß sind gegen seine Gefügebestandteile.“

Dichtebestimmung durch Auftrieb

Angreifende Kräfte am eingetauchten Körper

Nach dem Prinzip von Archimedes erfährt ein vollständig in einer Flüssigkeit oder Gas eingetauchter Körper eine Auftriebskraft, die der Gewichtskraft des Volumens der verdrängten Flüssigkeit entspricht. Um die zwei Unbekannten Dichte und Volumen zu bestimmen, sind zwei Messungen erforderlich.

Taucht man einen beliebigen Körper mit dem Volumen VK vollständig in zwei Flüssigkeiten oder Gase mit den bekannten Dichten ρ1 und ρ2 ein, so erfährt er die unterschiedlichen, resultierenden Gewichtskräfte FG1 bzw. FG2. Messbar sind die resultierenden Kräfte mittels einer einfachen Waage. Die gesuchte Dichte ρK lässt sich wie folgt bestimmen.

Ausgehend von der Formel für die Gewichtskraft des Körpers und den Auftriebskräften FAi:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_{G}=V_K \cdot \rho_K \cdot g ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_{Ai}=V_K \cdot \rho_i \cdot g

messen die beiden Waagen für die in die Flüssigkeit (oder das Gas) 1 oder 2 eingetauchten Massen die Gewichtskräfte

$ \,F_{Gi}=F_{G}-|F_{Ai}| $

Eliminiert man aus den beiden Gleichungen für i = 1,2 das Volumen VK, erhält man nach einigen einfachen mathematischen Umformungen die Lösung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ \rho_K = \frac{F_{G1} \cdot \rho_2 - F_{G2} \cdot \rho_1}{F_{G1}-F_{G2}}

Falls die eine Dichte sehr viel kleiner als die andere ist, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ \rho_1 \ll \rho_2\,, etwa bei Luft und Wasser, vereinfacht sich die Formel zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ \rho_K = \frac{F_{G1} }{F_{G1}-F_{G2}}\cdot \rho_2

Falls man nur eine Flüssigkeit, beispielsweise Wasser mit Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_W , hat, kann man die obige Methode folgendermaßen anwenden:

Gewicht des Körpers vor Eintauchen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_{G}=V_K \cdot \rho_K \cdot g ,

Gewicht (reduziert) des Körpers nach (vollständigem) Eintauchen, wobei das Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_K verdrängt wird (dies wird entweder durch den Überlauf aus dem vollen Gefäß, oder im Messzylinder gemessen):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F_{Gr}=V_K \cdot \rho_K \cdot g - F_{A} = V_K \cdot g (\rho_K -\rho_W) ,

also nach Umformen

$ \rho _{K}=\rho _{W}+{\frac {F_{Gr}}{V_{k}\cdot g}} $

Nach dieser Methode bestimmte schon Archimedes die Dichte der Krone eines Königs, der bezweifelte, ob diese wirklich aus reinem Gold bestehe (ρK = 19320 kg/m3.)

Auf der Auftriebmessung zur Dichtebestimmung von Flüssigkeiten beruhen das Aräometer (Spindel) und die Mohrsche Waage.

Weitere Messmethoden

  • Pyknometer, Dichtebestimmung von Festkörpern oder Flüssigkeiten durch Messen der verdrängten Flüssigkeitsvolumina
  • Isotopenmethode, Dichtebestimmung durch Strahlungsabsorption.
  • Biegeschwinger, Dichtebestimmung durch Schwingungsmessung

Eine einfache Abschätzung der Dichte lässt sich mit der Girolami-Methode erhalten.

Tabellenwerte

Tabellenwerte zur Dichte verschiedener Stoffe sind in folgenden Artikeln zu finden:

Literatur

  • DIN 1306 Dichte; Begriffe, Angaben

Weblinks

Wiktionary Wiktionary: Dichte – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

News mit dem Thema Dichte