Reaktionsenthalpie

Erweiterte Suche

(Weitergeleitet von Energieumsatz (Chemie))

Die Reaktionsenthalpie $ \Delta H_{\mathrm{R}} $ gibt die Änderung der Enthalpie im Verlauf einer Reaktion an, also den Energieumsatz einer bei konstantem Druck durchgeführten Reaktion. Hierbei ist egal, auf welchem Weg die Reaktion stattfindet oder in welcher Form (Wärme, Arbeit) Energie während der Reaktion aufgenommen oder abgegeben wird (Hess’scher Wärmesatz). Die Reaktionsenthalpie ist immer die Differenz der Enthalpien der Produkte und der Edukte.

Da Stoffe je nach Temperatur und Druck verschiedene Energien haben (zum Verständnis: Ein Gas hat unter hohem Druck mehr Energie gespeichert als unter niedrigem Druck), können Energiebilanzen verschiedener Reaktionen nur dann direkt miteinander verglichen werden, wenn man sich auf gleiche Außenbedingungen bezieht. Dazu verwendet man meist Standardbedingungen, seltener Normalbedingungen. Die Reaktionsenthalpie unter Standardbedingungen heißt Standardreaktionsenthalpie $ \Delta H_{\mathrm{R}}^{\circ} $.

In der Chemie wird meistens die molare Reaktionsenthalpie verwendet, bei der die Reaktionsenthalpie auf die Stoffmenge von einem Mol bezogen wird. Die Einheit dieser ist dementsprechend Joule pro Mol $ \bigl(\mathrm{\tfrac{J}{mol}} \bigr) $.

Exotherm – Endotherm

Da die Energiebilanz für das System angegeben wird, ist $ \Delta H $ negativ, wenn das Produkt energetisch tiefer als das Edukt liegt und somit insgesamt Energie abgegeben wird. Wandelt man die freiwerdende Energie nicht um, wird Wärme freigesetzt und die Probe erwärmt sich. Die Reaktion ist also exotherm.

Muss jedoch Energie aufgenommen werden, da das Produkt eine höhere Energie als das Edukt hat, wird $ \Delta H $ positiv. Die nötige Energie wird häufig aus der Umgebungswärme entnommen, die Umgebung wird kälter. Prozesse, bei denen Wärme aufgenommen wird, heißen endotherm.

Bei Reaktionen molekularer Stoffe lässt sich das Vorzeichen der Reaktionsenthalpie $ \Delta H_{\mathrm{R}} $ anhand der aufgebrochenen und neu gebildeten Bindungen während der Reaktion gut abschätzen. Dies beruht auf der Beobachtung, dass polare Bindungen stabiler, also energieärmer, als unpolare Bindungen sind. Sind mehr polare Bindungen in den Produktmolekülen als in den Eduktmolekülen vorhanden, so handelt es sich um eine exotherme, im umgekehrten Fall um eine endotherme Reaktion.[1]

Temperaturabhängigkeit

Die Reaktionsenthalpie ist so wie die Enthalpie temperaturabhängig. Wenn sich die Temperatur eines Stoffes ändert, so hat dies auch Auswirkungen auf seine Enthalpie. Unter der Voraussetzung, dass es im betrachteten Temperaturintervall zu keinem Phasenübergang kommt, ergibt sich die Enthalpie bei $ T_2 $, wie folgt:

$ H(T_2) = H(T_1) + \int_{T_1}^{T_2} \mathrm C_\mathrm{p}\, \mathrm \cdot \mathrm{d}T $.

Die Wärmekapazität $ C_p $ kann näherungsweise vor das Integral gezogen werden, wenn sie innerhalb des gewählten Temperaturbereichs (von $ T_1 $ nach $ T_2 $) ungefähr konstant bleibt.

Wenn nun eine Reaktion betrachtet wird, ergibt sich für Reaktionsenthalpie:

$ \Delta_\mathrm{R} H(T_2) = \Delta_\mathrm{R} H(T_1) + \int_{T_1}^{T_2} \Delta_\mathrm{R} C_\mathrm{p} \cdot \mathrm{d}T $.

Diese Gleichung wird auch Kirchhoffsches Gesetz genannt.

$ \Delta_\mathrm{R} C_\mathrm{p} $ ergibt sich aus den molaren Wärmekapazitäten der an der Reaktion beteiligten Stoffe und den dazugehörige stöchiometrischen Faktoren.

$ \Delta_\mathrm{R} C_\mathrm{p} = \sum_{k=1}^N \nu_\mathrm{k} \cdot C_\mathrm{p,k} $

Verwandte Größen

Bei konstantem Druck:

Bei konstantem Volumen:

Weblinks

Einzelnachweise

  1. Patrik Good: 5 Thermodynamik. S. 6 (19 S.).

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?