Affinitätschromatographie

Affinitätschromatographie

Die Affinitätschromatographie ist ein chromatographisches Trennverfahren zur Isolation eines Analyten aus einer Lösung verschiedener Stoffe. Voraussetzung ist, dass ein geeigneter Ligand (Bindungspartner) zu dem interessierenden Analyten (Protein) zur Verfügung steht. Sie ist eine der leistungsfähigsten Trennmethoden. Die verwendeten Säulen sind jedoch relativ kostspielig, so dass das Verfahren nur in besonderen Fällen beziehungsweise im kleinen Maßstab (Labormaßstab) zum Einsatz kommt.

Prinzip

Die Trennung erfolgt meist in Säulen, kann aber auch im Batchverfahren vorgenommen werden. Der Reinigungseffekt dieser Methode basiert entweder auf der spezifischen Erkennung eines Proteins durch einen Antikörper oder bei Enzymen auf Ausnutzung der spezifischen Affinität eines Enzyms zu einem Inhibitor, Substrat oder Cofaktor.

Die stationäre Phase (oft ein Gel, z. B. aus Dextranen oder quervernetzter Agarose (Handelsname Sepharose®) wird mit einem geeigneten Liganden (z. B. Antikörper) gekoppelt, der spezifisch den zu reinigenden Analyten bindet. Hierbei ist in der Praxis darauf zu achten, dass die Affinität gegen den Analyten nicht zu hoch ist, da die Elution dadurch erschwert wird. Umgekehrt kann zur präparativen Reinigung von Antikörpern (Immunglobulinen) auch eine stationäre Phase mit einem Protein (meist Protein A, G oder L) verwendet werden, das bestimmte Immunglobulinklassen bindet.

Zur Bindung eines Liganden auf dem Trägermaterial wird dieses vorher in eine aktivierte Form überführt. Beim Beispiel der Agarose kommt die Bromcyan-Aktivierungsmethode in Betracht, bei der reaktive Imidocarbonat-Gruppen erzeugt werden, die mit Aminogruppen des Analyten unter Ausbildung einer kovalenten Bindung reagieren. Nach der Fixierung eines niedermolekularen Liganden auf der Matrix (z.B. aktivierte Agarose) kann es zu sterischen Behinderungen kommen, wenn der Analyt eine große Molekülgröße hat. In diesem Fall kann der Ligand über ein Brückenglied (Spacer) an die Matrix gekoppelt werden. Als Spacer werden normalerweise kurze Kohlenwasserstoffketten verwendet, die dann gewissermaßen aus der Matrixoberfläche herausragen.

Für die Bindung von Ligand und Zielprotein ist die Assoziationskonstante, die sich aus der Gleichgewichtskonstanten ableitet, von Bedeutung. Je größer diese ist, desto günstiger verläuft die affinitätschromatographische Trennung. Der Wert sollte mindestens bei KAss= 104 mol-1 liegen.

Durchführung

Zur Ausführung affinitätschromatographischer Arbeiten werden heute meist biokompatible Anlagen der HPLC eingesetzt, die jedoch hier nur mit geringeren Drücken von bis zu 150 bar betrieben werden. Das zu trennende Gemisch wird in der Regel über Probenschleifen auf die Säule aufgegeben und die interessierende Substanz wird durch die Liganden gebunden. Alle anderen Stoffe verlassen die Säule schnell wieder, da sie mit dem Liganden nicht stark wechselwirken. Nach einem Waschschritt, um unspezifisch gebundene Verunreinigungen zu entfernen, wird der am Liganden gebundene Analyt durch Veränderung der Bedingungen (Pufferzusammensetzung) dazu gebracht, ebenfalls die Säule zu verlassen (Elution). Als Elutionsmittel wird oft ein saurer Puffer oder ein Lösungsmittel/Wasser-Gemisch verwendet. Alternativ können auch kompetitiv zum Zielprotein agierende Substanzen oder ein Überschuss an freien Liganden zugesetzt werden. Das Eluat enthält den gereinigten und angereicherten Analyten.

Beispiele

Beispiele für Liganden zur Proteinaufreinigung:

Ligand Zielprotein
Antigen,
Protein A, Protein G oder Protein L
Antikörper
Substrat, Kofaktor Enzym
Ligand Rezeptor
Lectin Glykoprotein
Nukleinsäure Nukleinsäure bindendes Protein
Streptavidin, Avidin Biotin,
Protein mit Streptavidin-peptid
Metallionenchelat
wie Ni2+-NTA
Protein mit Poly-histidin-peptid

Literatur

  • Heinz Bende: Affinitäts-Chromatographie. In: Chemie in unserer Zeit. 8, Nr. 1, 1974, ISSN 0009-2851, S. 17−25, doi:10.1002/ciuz.19740080104.
  • Porath, J. et al. (1975): Metal chelate affinity chromatography, a new approach to protein fractionation. In: Nature. Bd. 258, Nr. 5536, S. 598-599. PMID 1678

Siehe auch

Weblinks