Strahlungsdetektor

Dieser Artikel behandelt Detektoren für elektromagnetische Strahlung. Nachweisgeräte für Teilchenstrahlung werden im Artikel Teilchendetektor behandelt.

Ein Strahlungsdetektor ist ein Bauteil zur Messung elektromagnetischer Strahlung. Je nach Bauweise des Detektors kann Strahlung unterschiedlicher Wellenlänge nachgewiesen werden. Viele Strahlungsdetektoren können zugleich als Teilchendetektoren dienen.

Funktionsweise

Die Funktionsweise eines Strahlungsdetektors beruht auf elektromagnetischen Wechselwirkungen der Photonen, also der Feldquanten des elektromagnetischen Feldes, mit den Elektronen oder Atomkernen des Detektormaterials (häufig Edelgase oder Halbleiter).

Je nach Detektorart macht man sich verschiedene Wechselwirkungsmechanismen zunutze.

Am häufigsten ist die Wechselwirkung mit den Elektronen (der Photoeffekt). Ist die Energie des Photons gleich groß oder größer als die Bindungsenergie des Elektrons, so kann das Elektron durch das Photon aus dem Atomverbund gelöst werden. Dieses Elektron lässt man durch Anlegen eines elektrischen Feldes zur Anode driften, und dort lässt es sich durch die Messung des elektrischen Stroms oder der elektrischen Ladung nachweisen. Das Licht im sichtbaren und nahen Infrarotbereich kann die relativ schwach gebundenen Valenzelektronen herausschlagen, die deutlich höherenergetische Röntgen- und Gammastrahlung wechselwirkt überwiegend mit den stärker gebundenen inneren Elektronen.

Die Energie des Elektrons ist gleich der Differenz der Energie des einfallenden Photons und der Bindungsenergie des Elektrons. Ist die Energie des Elektrons hoch genug, so kann es weitere Atome ionisieren, so dass zahlreiche Elektronen frei werden und nachgewiesen werden können. Bei Röntgenstrahlung ist die Anzahl der generierten Elektronen proportional zur Energie des einfallenden Photons.

Beispiele

  • Photozellen zum Nachweis von Licht (NIR bis UV) und dessen Quantenenergie (veraltet)
  • Photomultiplier als hochempfindliche Detektoren (bis zum Einzelphotonennachweis) für NIR bis UV, gekoppelt mit Szintillatoren auch für hochenergetische Strahlung (Röntgen- oder Gammastrahlung)
  • Fotowiderstände, Photodioden (siehe auch: pin-Photodiode, Avalanche-Photodiode) und Fototransistoren zum Nachweis von sichtbarem Licht, NIR und UV
  • CCD-Sensoren zum ortsaufgelösten Nachweis von sichtbarem Licht, NIR und UV
  • Zählrohre zum Nachweis der meisten Arten ionisierender Strahlung
  • Halbleiterdetektoren aus Silizium oder Germanium zum Nachweis von hochenergetischer Ultraviolettstrahlung (Vakuum-UV, Extrem-UV), sowie Röntgen- und Gammastrahlung
  • Bolometer, Thermoelement, Golay-Zelle und pyroelektrische Sensoren (z. B. in Niedertemperatur-Pyrometern) weisen die Strahlung aufgrund der von ihr hervorgerufenen Temperaturunterschiede nach.
  • Fotoplatten oder -filme, in denen die Strahlung bleibende chemische Veränderungen bewirkt, die sich durch die Entwicklung sichtbar machen lassen.
  • IR-Sensorkarten wandeln infrarote Strahlung durch nichtlineare Effekte in sichtbares Licht um
  • Szintillationszähler wandeln die Energie, die die Wechselwirkung hochenergetischer Quanten oder Elementarteilchen in einem Szintillator freisetzt, in Lichtblitze um und messen über die Lichtmenge pro Blitz auch deren Quanten- oder Teilchenenergie. Diese können auch in Hodoskopen zur Verfolgung der Teilchenbahnen eingesetzt werden.

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.