Separabilität (Quantenmechanik)

Separabilität (Quantenmechanik)

In der Quantenmechanik bezeichnet man den Zustand eines zusammengesetzten Systems als separabel wenn er nicht verschränkt ist, das heißt, wenn er sich als Gemisch aus Produktzuständen schreiben lässt.

Separabilität für reine Zustände

Der Einfachheit halber werden im folgenden alle Räume als endlichdimensional angenommen. Zunächst betrachten wir reine Zustände.

Separabilität ist eine Eigenschaft zusammengesetzter Quantensysteme, das heißt im einfachsten („bipartiten“) Fall, eines aus den Teilsystemen 1 und 2 bestehenden Gesamtsystems 12. Die quantenmechanischen Zustandsräume der Teilsysteme seien die Hilberträume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_2 mit den jeweiligen orthonormalen Basisvektoren $ \{|{a_{i}}\rangle \}_{i=1}^{n} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{|{b_j}\rangle\}_{j=1}^m . Der Hilbertraum des zusammengesetzten Systems ist dann das Tensorprodukt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{12} = H_1\otimes H_2,

mit der Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{|{a_i}\rangle\otimes |{b_j}\rangle\} , oder in kompakterer Notation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{|a_i b_j \rangle\} . Jeder Vektor in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{12} (d.h., jeder reine Zustand des Systems 12) lässt sich schreiben als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi\rangle = \Sigma_{i,j} c_{i,j} | a_i \rangle \otimes | b_j \rangle =\Sigma_{i,j} c_{i,j} | a_i b_j \rangle .

Wenn sich ein reiner Zustand $ |\psi \rangle \in H_{1}\otimes H_{2} $ in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle schreiben lässt (wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi _i \rangle ein reiner Zustand des Teilsystems Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i ist), heißt er separabel oder Produktzustand. Andernfalls nennt man den Zustand verschränkt.

Standardbeispiele für einen separablen und einen verschränkten Zustandsvektor in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{12} = \mathbb{C}^2 \otimes \mathbb{C}^2 sind

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |00\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\Phi^+\rangle = (|00\rangle+|11\rangle)/\sqrt{2}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.

Man sieht,

  • dass man in einem reinen separablen Zustand jedem Teilsystem einen "eigenen" Zustand zuweisen kann.
  • dass sich jeder reine separable Zustand durch lokale quantenmechanisch zulässige Operationen aus jedem anderen Zustand (z.B. aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |00\rangle ) erzeugen lässt.

Beides ist in einem verschränkten Zustand nicht möglich. Passend verallgemeinert lässt sich diese Unterscheidung auch auf den Fall gemischter Zustände übertragen.

Die vorangehende Diskussion lässt sich ohne wesentliche Änderungen auf den Fall unendlichdimensionaler Systeme verallgemeinern.

Separabilität für gemischte Zustände

Nun betrachten wir den Fall gemischter Zustände. Ein gemischter Zustand des zusammengesetzten Quantensystems 12 wird durch eine Dichtematrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho beschrieben, die auf dem Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{12}=H_1 \otimes H_2 wirkt.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho ist separabel wenn es Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_k\geq 0 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_1+p_2+... = 1 und Zustände Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{\rho_1^k \} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{ \rho_2^k \} auf $ H_{2} $ gibt (die jeweils gemischte Zustände der Teilsysteme beschreiben), so dass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho=\sum_k p_k \rho_1^k \otimes \rho_2^k.

Andernfalls heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho verschränkt.

Die physikalische Bedeutung dieser mathematischen Definition ist, dass sich ein separabler Zustand als Gemisch von Produktzuständen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_1^k \otimes \rho_2^k auffassen lässt.

  • Dies impliziert zum einen, dass ein separabler Zustand nur klassische Korrelationen zwischen den Teilsystemen beschreibt. (Denn ein Produktzustand beschreibt unabhängige (unkorrelierte) Systeme und die Korrelationen sind durch die klassische Wahrscheinlichkeitsverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_k gegeben.)
  • Zum anderen folgt, dass sich ein separabler Zustand mittels lokaler quantenmechanisch erlaubter Operationen und klassischer Kommunikation aus jedem anderen Zustand (z.B. aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |00\rangle erzeugen lässt. (Mittels klassischer Kommunikation wählen beide Parteien einen Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k gemäß der Wahrscheinlichkeitsverteilung $ p_{k} $ aus und erzeugen dann (was jeweils lokal möglich ist) den Produktzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho^1_k\otimes\rho^2_k .)

Es ist nach der obigen Definition klar, dass die separablen Zustände eine konvexe Menge bilden.

Wenn die Zustandsräume unendlichdimensional sind, werden Dichtematrizen durch positive Spurklasseoperatoren mit Spur 1 ersetzt. Ein Zustand heißt dann separabel, wenn er (in der Spurnorm) durch Zustände der obigen Form beliebig genau approximiert werden kann.

Separabilität für Vielparteien-Systeme

Die vorangehende Diskussion lässt sich leicht für aus vielen Teilsystemen bestehende Quantensysteme verallgemeinern. Wenn das System aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n Teilsystemen mit System-Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_i, i=1,...,n besteht, dann ist ein reiner Zustand auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{1..n} = H_1\otimes H_2\otimes...\otimes H_n genau dann separabel (genauer: vollständig separabel), wenn er von der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): | \psi \rangle = | \psi_1 \rangle \otimes \cdots \otimes |\psi_n \rangle

ist. Analog ist ein gemischter Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_{1..n} separabel, wenn er sich als konvexe Summe von Produktzuständen schreiben lässt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho = \sum_k p_k \rho_1 ^k \otimes \cdots \rho_n ^k .

Separabilitätskriterien

Ein reiner Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_{12} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1 \otimes H_2 ist genau dann separabel, wenn die Entropie der reduzierten Zustände verschwindet, das heißt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S(\rho_1) = 0 oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S(\rho_2) = 0 ist (beide Gleichungen sind über die Schmidt-Zerlegung äquivalent).

Die Frage, ob ein gegebener gemischter Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho separabel ist (Separabilitätsproblem), ist im Allgemeinen schwer zu beantworten (NP-Schwere[1]). Die Unterscheidung von separablen und verschränkten Zuständen ist in der Quanteninformationstheorie von großem Interesse, da nur verschränkte Zustände Quantenkorrelationen aufweisen und eine wichtige Ressource darstellen, die Verfahren wie Quantenteleportation ermöglicht.

Ein Separabilitätskriterium ist eine (leicht überprüfbare) Bedingung, die jeder separable Zustand erfüllt (notwendige Bedingung für Separabilität). Die Verletzung einer solchen Bedingung ist dann hinreichend für den Nachweis von Verschränkung. Beispiele für solche Kriterien sind die Erfüllung der Bellschen Ungleichung oder das Peres-Horodecki-Kriterium, das besagt, dass die Dichtematrix eines separablen Zustands unter partieller Transposition[2] positiv bleibt. Allgemeiner lässt sich formulieren, dass die Dichtematrix eines separablen Zustands unter Anwendung jeder positiven Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T in einem der Teilsysteme positiv bleiben muss:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1\otimes T)\rho \geq 0 .

Im Allgemeinen (d.h. für nicht notwendig separable Zustände) gilt dies nur für vollständig positive Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T . Die Gültigkeit der obigen Ungleichung für alle positiven Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T ist notwendig und hinreichend für Separabilität.[3]

Andere Separabilitätskriterien ergeben sich aus den sogenannten Verschränktheitszeugen (entanglement witnesses) oder aus Verschränktheitsmaßen.

Literatur

  • Gernot Alber und M. Freyberger: Quantenkorrelationen und die Bellschen Ungleichungen, Physikalische Blätter 55, Nr. 10, 24 (1999).
  • Asher Peres: Quantum Theory: Concepts and Methods', Kluwer Academic, 1995.
  • Eckert et al.: Entanglement Properties of Composite Quantum Systems. In: Quantum Information Processing'. Th. Beth und G. Leuchs (Hrsg.), Wiley-VCH, 2003.
  • Jürgen Audretsch: Verschränkte Welt. Faszination der Quanten. Wiley-VCH, 2002.
  1. Gurvits J. Comput. Syst. Sci. 69, 448-484, (2004); Eprint quant-ph/0201022
  2. Als partielle Transposition einer Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1\otimes H_2 bezeichnet man die Matrix, bei der die Transposition nur bezüglich eines der beiden Teilsysteme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1,H_2 gebildet wird. Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{e_i\} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{f_i\} Orthonormalbasen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1 bzw. $ H_{2} $ und seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{ij,kl} die Matrixelemente in der Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \{e_i\otimes f_j\} , dann gilt für die bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H_1 partiell transponierte Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M^{T_1} , dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (M^{T_1})_{ij,kl} = M_{kj,il} . Die lineare Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_1: M\to M^{T_1} wird oft auch als partielle Transposition bezeichnet. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_1 ist ein Beispiel für einen "positive, aber nicht vollständig positive" Abbildung. (vgl. z.B. Horodecki et al. Phys.~Lett. A 223, 1 (1996))
  3. Horodecki et al. Phys.~Lett. A 223, 1 (1996); Eprint quant-ph/9605038.

Weblinks

Siehe auch