Organic Rankine Cycle
Der Organic Rankine Cycle (Abkürzung ORC) ist ein Verfahren des Betriebs von Dampfturbinen mit einem anderen Arbeitsmittel als Wasserdampf. Der Name des Verfahrens geht auf William John Macquorn Rankine zurück, einen schottisch-britischen Physiker und Ingenieur. Als Arbeitsmittel werden organische Flüssigkeiten mit einer niedrigen Verdampfungstemperatur verwendet.
Das Verfahren kommt vor allem dann zum Einsatz, wenn das zur Verfügung stehende Temperaturgefälle zwischen Wärmequelle und -senke zu niedrig für den Betrieb einer von Wasserdampf angetriebenen Turbine ist.[1] Das ist vor allem bei der Stromerzeugung mit Hilfe der Geothermie, der Kraft-Wärme-Kopplung sowie bei Solarkraftwerken und Meereswärmekraftwerken der Fall. Die Entspannungsmaschinen (Turbine, Schraubenexpander) werden typischerweise mit Silikonöl, Kältemittel oder brennbarem Gas betrieben.
Arbeitsmedien
Ausgehend vom T-s-Diagramm werden nach der Form der Sattdampfkurve drei verschiedene Fluidklassen unterschieden:
- Die Sattdampfkurve „trockener“ Medien ist steigend; in der Mehrzahl handelt es sich um höhermolekulare Substanzen wie R113,
- „Nasse“ Medien wie Wasser haben eine fallende Sattdampfkurve,
- „Isentrope“ Medien haben eine nahezu senkrechte Sattdampfkurve; dazu zählen R11 und R12,
Isentrope und „trockene“ Medien versprechen bei ihrem Einsatz eine Reihe von thermodynamischen Vorteilen.
Mögliche Arbeitsmedien sind:
Medium | Molmasse | Kritischer Punkt | Siedetempe-
ratur (1atm) |
Verdampfungs-
wärme (1atm) |
Steigung der
Sattdampfkurve |
Zersetzung
bei ca. | |
---|---|---|---|---|---|---|---|
Ammoniak (NH3) | 17 | 405,3 K | 11,33 MPa | 239,7 K | 1347 kJ/kg | Negativ | 750 K |
Wasser | 18 | 647,0 K | 22,06 MPa | 373,0 K | 2256 kJ/kg | Negativ | . |
n-Butan C4H10 | 58,1 | 425,2 K | 3,80 MPa | 272,6 K | 383,8 kJ/kg | . | . |
n-Pentan C5H12 | 72,2 | 469,8 K | 3,37 MPa | 309,2 K | 357,2 kJ/kg | . | . |
C6H6 | 78,14 | 562,2 K | 4,90 MPa | 353,0 K | 438,7 kJ/kg | Positiv | 600 K |
C7H8 | 92,1 | 591,8 K | 4,10 MPa | 383,6 K | 362,5 kJ/kg | Positiv | . |
R134a (HFC-134a) | 102 | 374,2 K | 4,06 MPa | 248,0 K | 215,5 kJ/kg | Isentrop | 450 K |
C8H10 | 106,1 | 616,2 K | 3,50 MPa | 411,0 K | 339,9 kJ/kg | Positiv | . |
R12 | 121 | 385,0 K | 4,13 MPa | 243,2 K | 166,1 kJ/kg | Isentrop | 450 K |
HFC-245fa | 134,1 | 430,7 K | 3,64 MPa | 288,4 K | 208,5 kJ/kg | . | 520 K |
HFC-245ca | 134,1 | 451,6 K | 3,86 MPa | 298,2 K | 217,8 kJ/kg | . | . |
R11 (CFC-11) | 137 | 471,0 K | 4,41 MPa | 296,2 K | 178,8 kJ/kg | Isentrop | 420 K |
HFE-245fa | 150 | 444,0 K | 3,73 MPa | . | . | . | . |
HFC-236fa | 152 | 403,8 k | 3,18 MPa | 272,0 K | 168,8 kJ/kg | . | . |
R123 | 152,9 | 456,9 K | 3,70 MPa | 301,0 K | 171,5 kJ/kg | Positiv | . |
CFC-114 | 170,9 | 418,9 K | 3,26 MPa | 276,7 K | 136,2 kJ/kg | . | . |
R113 | 187 | 487,3 K | 3,41 MPa | 320,4 K | 143,9 kJ/kg | Positiv | 450 K |
n-Perfluoro-Pentan C5F12 | 288 | 420,6 K | 2,05 MPa | 302,4 K | 87,8 kJ/kg | . | . |
Eine weitere Wirkungsgradverbesserung ist durch den Einsatz von Gemischen möglich. In subkritischen Verläufen erfolgen sowohl das Verdampfen als auch die Kondensation nicht isotherm; der Abkühlungskurve des Wärmeträgers kann mit deutlich geringeren Temperaturdifferenzen gefolgt werden; damit reduzieren sich die Irreversibilitäten bei der Wärmeübertragung.
In jüngster Zeit werden für den ORC-Prozess synthetische Arbeitsmedien entwickelt. Diese werden in ihren Stoffeigenschaften den speziellen Temperatur- und Druckeigenschaften des ORC-Kreisprozesses angepasst. Ein derartiges neues synthetisches Arbeitsmedium auf Silikonbasis mit der Bezeichnung GL160 ist frei von Chlor und Fluor und aus diesem Grund besonders umweltfreundlich. Mit synthetischen Arbeitsmedien werden höhere thermodynamische Wirkungsgrade erzielt, als es mit Massenchemikalien möglich wäre, die zufällig in vorhandene thermodynamische Gefälle eingepasst werden. [2]
Funktionsbeschreibung
Der Organic Rankine Cycle gleicht – bezogen auf die einzelnen Komponenten – dem klassischen Clausius-Rankine-Kreisprozess. Die wesentlichen Unterschiede liegen in den Prozessparametern Druck und Temperatur – beide liegen weit unter den Werten, wie sie in Dampfkraftwerken herrschen – und in der Abweichung der Verdampfung und der Kondensation vom isothermen Verlauf.[3] [4]
Die Auswahlbedingungen für das geeignetste Arbeitsmedium ergeben sich durch die Temperatur und die Abkühlungskurve der zur Verfügung stehenden Wärmequelle. Durch den starken Einfluss der thermodynamischen Verluste auf den Gesamtwirkungsgrad bei niedrigen Prozesstemperaturen kommt der Auswahl des optimierten Prozesses für die konkrete Wärmequelle weit größere Bedeutung zu als bei herkömmlichen Wärmekraftwerken.
Grundsätzlich lassen sich viele der zur Prozessoptimierung entwickelten Verfahren des klassischen Dampfprozesses auch auf den ORC-Prozess übertragen. Einige Ansätze, wie die Zwischenüberhitzung, bringen jedoch wegen der anderen thermodynamischen Eigenschaften der Arbeitsmedien nur begrenzte oder gar keine Vorteile. Andere, wie der Ausbau als superkritischer Prozess (Kritischer Punkt), sind mit Wasser kaum realistisch umzusetzen. Auch der Einsatz eines Rekuperators ist nur mit „trockenen“ Medien sinnvoll.[5]
Durch die Verwendung organischer Arbeitsmittel treten jedoch verschiedene neue technische Fragestellungen in den Vordergrund. Turbinen sind meist Sonderturbinen, da sich das Arbeitsmittel stark von Wasser unterscheidet (molare Masse, geringere spezifische Wärmekapazität), die Arbeitsmittel sind teilweise aggressiv, so dass die Oberflächen der Turbinen und der Wärmeübertrager beschichtet oder anders gegen Korrosion geschützt werden müssen, die Dichtung der Kreisläufe ist aufwendiger als bei Wasser, in manchen Fällen nur schwer realisierbar.
Siehe auch
- Dampfkraftwerk
- Rankine-Zyklus
- Kalina-Prozess
Referenzen
- ↑ Informationen zum ORC-Prozess
- ↑ Beschreibung des ORC-Prozesses
- ↑ Silke Köhler und Ali Saadat, GeoForschungsZentrum Potsdam „Möglichkeiten und Perspektiven der geothermischen Stromerzeugung" STR00/23, Geothermie Report 00-1
- ↑ K. Gawlik, V. Hassani „Advanced binary cycles: optimum working fluids“ September 20-23, 1998 Geothermal Resources Council 1998 Annual Meeting, San Diego, California
- ↑ Paola Bombarda, Ennio Macchi „Optimum cycles for geothermal power plants“ Proceedings World Geothermal Congress 2000 Kyushu - Tohoku, Japan, May 28 - June 10, 2000
Weblinks
- Fachbeitrag: "Effizienz kleiner ORC-Systeme" (bis 60 kW) (PDF-Datei; 1006 kB)
- Abwärme zu Strom veredeln (BINE Informationsdienst)
- ORC-Fachverband