Michaelis-Menten-Theorie

Die nach Leonor Michaelis und Maud Menten benannte Michaelis-Menten-Theorie ist ein mathematisches Modell, das die Kinetik von Enzymen näherungsweise beschreibt. Sie gilt für enzymatisch katalysierte Reaktionen mit folgendem generellen Mechanismus: Das freie Enzym bindet zuerst reversibel an sein Substrat und bildet einen Enzym-Substrat-Komplex. Das Substrat wird anschließend umgewandelt und der Komplex zerfällt in das freie Enzym und das Reaktionsprodukt. Die Michaelis-Menten-Theorie erlaubt eine quantitative Beschreibung der anfänglichen Reaktionsgeschwindigkeit in Abhängigkeit von der vorhandenen Substratkonzentration und weiterer Parameter.

Theoretischer Hintergrund

Einfache Beschreibung einer enzymatischen Reaktion

Als Biokatalysatoren bilden Enzyme E mit ihrem Substrat S einen Komplex ES (Enzym-Substrat-Komplex), aus dem heraus sich die Reaktion zum Produkt P vollzieht:[1]

Substratumsetzung allgemein

k1 und k'1 sind die Geschwindigkeitskonstanten für die Assoziation (Zusammenlagerung) von E und S bzw. die Dissoziation des Enzym-Substrat-Komplexes ES. k2 und k'2 sind die entsprechenden Konstanten für die Reaktion zum Produkt bzw. die Rückreaktion zum Substrat. k3 und k'3 beschreiben die Dissoziation bzw. Assoziation eines Enzym-Produkt-Komplexes. Diese Rückreaktion findet unter den Bedingungen der Enzymkinetik, das heißt unmittelbar nach Mischung der Komponenten E und S, noch nicht statt, darum kann man k'3=0 annehmen. Ferner wird die Umwandlung von ES zu EP (und nicht die spontane Freisetzung von P) gemessen, so dass die folgende Vereinfachung gerechtfertigt ist:[2]

Enzymkinetik: k2 = kcat

Dieses System lässt sich allgemein durch ein System aus gewöhnlichen Differentialgleichungen beschreiben (Massenwirkungskinetik), welches in der Regel nur numerisch zu lösen ist.[3] Die Michaelis-Menten Kinetik ergibt sich erst unter der weiteren Annahme des Fließgleichgewichtes, stellt also einen Spezialfall der allgemeineren Massenwirkungskinetik dar.

Fließgleichgewicht

Im Allgemeinen sind Enzyme in der Lage, schwankende Substratkonzentrationen auszugleichen, d. h. sehr schnell ein Fließgleichgewicht („steady state“) dadurch einzustellen, dass sie ihre Tätigkeit dem Angebot anpassen. Dies bedeutet, dass die Konzentration des Enzym-Substrat-Komplexes auf der langsameren Zeitskala, die für den Prozess der Produktbildung gültig ist, konstant bleibt. Es gilt also $ \tfrac{\mathrm d[ES]}{\mathrm dt} = 0. $ Diese Annahme des Fließgleichgewichts wurde von G.E. Briggs und J.S. Haldane entwickelt. Die Michaelis-Menten Kinetik ist nur unter Annahme dieses Fließgleichgewichts mit einer konstanten [ES] gültig.

Die Michaelis-Menten-Gleichung

Die aus der Reaktionsgleichung abgeleitete Michaelis-Menten-Kinetik lässt sich allgemein darstellen[4] als:

$ v_0 = \frac{v_\mathrm{max} \cdot [S]}{K_m + [S]} $

v0 gibt hierbei die initiale Reaktionsgeschwindigkeit bei einer bestimmten Substratkonzentration [S] an. vmax ist die maximale Reaktionsgeschwindigkeit.

Eine Kenngröße für eine enzymatische Reaktion ist die Michaeliskonstante Km. Sie hängt von der jeweiligen enzymatischen Reaktion ab. Km gibt die Substratkonzentration an, bei der die Umsatzgeschwindigkeit halbmaximal ist (v=½·vmax), die also bei Halbsättigung vorliegt.[5] Sie ergibt sich als

$ K_m = \frac{k'_1 + k_2}{k_1} $

für den Fall, dass k2 gegenüber k1 nicht vernachlässigt werden kann (Briggs-Haldane-Situation). Ein Spezialfall ("Michaelis-Menten-Fall") ist gegeben wenn   k2 << k'1. Hierbei vereinfacht sich der Km zu:

$ K_m = \frac{k'_1}{k_1} $

Dies entspricht der Dissoziationskonstante des Enzym-Substrat-Komplexes. In diesem Fall kann man den Km also als Maß für die Affinität des Enzyms für das Substrat betrachten.

Eine weitere wichtige Größe ist die Wechselzahl, auch molekulare Aktivität oder „turnover number“ genannt. Dies ist die Geschwindigkeitskonstante des geschwindigkeitsbestimmenden Schrittes der Reaktion und wird mit kcat bezeichnet. Ist, wie im oben genannten Fall, der zweite Schritt geschwindigkeitsbestimmend, so ergibt sich aus der Definition der Reaktionsgeschwindigkeit, dass

$ v = \frac{\mathrm d[P]}{\mathrm dt} = k_\mathrm{cat}[ES] $

und somit

$ k_\mathrm{cat} = {v_\mathrm{max}}{[E]+[ES]} $.

Sättigung der enzymatischen Reaktion

Im Gegensatz zur Kinetik unkatalysierter Reaktionen gibt es in der Enzymkinetik das Phänomen der Sättigung: bei sehr hohen Substratkonzentrationen kann die Umsatzgeschwindigkeit v nicht weiter gesteigert werden, das heißt es wird ein Wert vmax erreicht.

Km entspricht der Konzentration, für die v = ½ vmax gilt

Die Sättigungsfunktion eines „Michaelis-Menten-Enzyms” lässt sich unter Verwendung der Parameter Km und vmax wie folgt formulieren:

$ v = \frac{v_\mathrm{max} \cdot [S]}{K_m + [S]} $

Diese Michaelis-Menten-Beziehung ist die Gleichung einer Hyperbel mit den folgenden in der Abbildung gezeigten Eigenschaften:

  • Der Y-Wert der waagerechten Asymptote entspricht vmax
  • Entspricht die Substratkonzentration [S] dem Km-Wert, so liegt die Hälfte des ursprünglich vorhandenen Enzyms [E]0 in Form des Enzym-Substrat-Komplexes [ES] vor, die andere Hälfte ist frei [E].
  • Da die Sättigung asymptotisch angenähert wird, sind hierzu Substratkonzentrationen erforderlich, die mehr als dem zehnfachen Km-Wert entsprechen. Im Umkehrschluss gilt: Hat man für ein Enzym eine Sättigungshyperbel gemessen, d. h. die Umsatzgeschwindigkeit v als Funktion der Substratkonzentration [S] bestimmt, so lassen sich daraus vmax (die Aktivität) und Km (die reziproke Affinität) ableiten. Ein relativ neues, einfaches und doch präzises Verfahren zu diesem Zweck ist die direkt-lineare Auftragung (siehe Enzymkinetik).

Inhibitoren und ihr Einfluss auf die Michaelis-Menten-Kinetik

Inhibitoren, darunter wichtige Medikamente und Gifte, ändern die Eigenschaften von Enzymen und hemmen die enzymatische Reaktion. Man kann Inhibitoren in verschiedene Klassen unterteilen (siehe dazu: Enzymhemmung). Je nach Wirkungsweise des Inhibitors, hat dieser einen unterschiedlichen Einfluss auf die Michaelis-Menten-Gleichung:

  • „kompetitive“ Inhibitoren erhöhen den Km-Wert, verändern vmax jedoch nicht.
  • „unkompetitive“ Inhibitoren (selten anzutreffen) binden spezifisch an den Enzym-Substrat Komplex. Sie senken sowohl die vmax als auch den scheinbaren Km-Wert.
  • Inhibitoren vom Mischtyp erhöhen den Km-Wert und erniedrigen vmax
  • als Sonderfall des Mischtyps hat der „nichtkompetitive“ Inhibitor zu gelten, der ausschließlich den vmax-Wert senkt und den Km-Wert unverändert lässt. Bei Einsubstrat-Enzymen kommt dieser Typus nicht vor.

Siehe auch

Literatur

  • Andrés Illanes,: Enzyme biocatalysis: principles and applications. Springer, Dordrecht 2008, ISBN 978-1-402-08360-0.
  • David L. Nelson, Michael M. Cox: Lehninger Biochemie. 4. Auflage. Springer, Berlin / Heidelberg 2009, ISBN 978-3-540-68637-8. Kapitel: Enzyme.

Einzelnachweise

  1.  Eintrag: Michaelis–Menten kinetics. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.M03892 (Version: 2.3.1).
  2.  Eintrag: Michaelis–Menten mechanism. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.M03893 (Version: 2.3.1).
  3. Chen WW, Niepel M, Sorger PK: Classic and contemporary approaches to modeling biochemical reactions. In: Genes Dev.. 24, Nr. 17, September 2010, S. 1861–75. doi:10.1101/gad.1945410. PMID 20810646.
  4. Zur Herleitung siehe Enzyme Kinetics (PDF)
  5.  Eintrag: Michaelis constant. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.M03891 (Version: 2.3.1).

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.