Invar

Metallquader aus Invar

Invar ist eine Eisen-Nickel-Legierung mit einem sehr geringen Wärmeausdehnungskoeffizienten und besteht aus 64 % Eisen und 36 % Nickel. Invar ist auch unter den Bezeichnungen Invar 36, Nilo alloy 36, Nilvar, NS 36, Permalloy D, Radio metal 36, Vacodil 36 vertrieben. Es hat die Werkstoffnummer 1.3912.

Der Name wird auch als Oberbegriff für eine Gruppe von Legierungen und Verbindungen verwendet, welche die bemerkenswerte Eigenschaft besitzen, in bestimmten Temperaturbereichen anomal kleine oder zum Teil negative Wärmeausdehnungskoeffizienten zu haben. Der Name resultiert also aus der Invarianz der Dehnung bezüglich einer Temperaturänderung.

Invar ist eine Marke von Imphy Alloys, die gegenwärtig zum Stahlkonzern Arcelor Mittal gehören. Invar-Legierungen haben in der Wirtschaft ein breites Anwendungsspektrum gefunden und werden dort eingesetzt, wo besonderer Wert auf Längenstabilität bei Temperaturschwankungen gelegt wird.

Geschichte

Entdeckt wurde der Effekt 1896 von dem Schweizer Physiker Charles Édouard Guillaume an der Invar-Legierung Fe65Ni35, der dafür 1920 den Nobelpreis für Physik erhielt. Er arbeitete im internationalen Büro für Gewichte und Maße und suchte ein billiges Material, um Längen- und Massenstandards herzustellen. Damals wurden diese Standards, wie zum Beispiel das Urmeter, aus einer Platin-Iridium-Legierung gefertigt.

Legierungen

Wärmeausdehnungskoeffizient in Abhängigkeit vom Nickelgehalt

Fe65Ni35-Invar enthält 65 % Eisen und 35 % Nickel. Bis zu 1 % Magnesium, Silicium und Kohlenstoff werden legiert, um die mechanischen Eigenschaften zu verändern. Durch Legieren von 5 % Cobalt kann der thermische Ausdehnungskoeffizient weiter reduziert werden. Eine Bezeichnung für die Legierung ist Inovco, Fe-33Ni-4.5Co, α (20–100 °C) von 0,55 ppm/K.

Varianten dieser Legierung haben einen etwas anderen thermischen Ausdehnungskoeffizienten. So hat Kovar (42 % Nickel) den Ausdehnungskoeffizienten von ca. 5 ppm/K.

Heutzutage sind viele weitere Legierungen bekannt, bei denen ein Invar-Effekt auftritt:

  • kubisch flächenzentriert (fcc) : FeNi, FePt, FePd, FeMn, CoMn, FeNiPt, FeNiMn, CoMnFe uvw.
  • kubisch-raumzentriert (bcc) : CrFe, CrMn
  • hexagonal dichteste Kugelpackung (hcp) : CoCr
  • amorph : FeB, FeP uvw.

Laves-Phasen und Verbindungen: TiFe2, ZrFe2, RECo2 (RE = seltene Erden außer Eu), FeC, Dy2(FeCo)17...

Eigenschaften

Am Beispiel von Fe65Ni35-Invar:

  • spez. el. Widerstand = 0,75–0,85 Ω · mm2/m,
  • Elastizitätsmodul = 140–150 GPa,
  • Brinellhärte = 160,
  • Reißdehnung < 45 %,
  • Zugfestigkeit = 450–590 MPa,
  • Dichte = 8 g/cm³,
  • Längenausdehnungskoeffz. bei 20-90 °C = 1,7–2,0 ·10−6 K−1,
  • Wärmeleitfähigkeit bei 23 °C = 13 Wm−1K−1

Physikalischer Hintergrund

Der Invar-Effekt beruht auf einer negativen Volumenmagnetostriktion des Kristallgitters. Das bedeutet, dass durch eine Abstoßung der magnetischen Momente der einzelnen Atome der Legierung das Gitter „aufgebläht“ wird, sich die Atomabstände also vergrößern. Dieser Effekt nimmt jedoch mit steigender Temperatur ab (da die magnetischen Momente abnehmen) und lässt das Kristallgitter dadurch schrumpfen. Die Abnahme der negativen Volumenmagnetostriktion bei steigender Temperatur verhält sich damit gegenläufig zur Wärmeausdehnung, die die Atomabstände vergrößert. Diese physikalischen Phänomene können sich in bestimmten Temperaturbereichen so kompensieren, dass sich die Atomabstände effektiv nicht ändern und der Festkörper dadurch keine Längenänderung (bzw. Volumenänderung) erfährt. Der Invar-Effekt verschwindet zusammen mit den magnetischen Momenten der Atome ab der jeweiligen magnetischen Ordnungstemperatur des Materials, also der Curie-Temperatur bzw. der Néel-Temperatur.

Verwendungsbereich

Nivellierlatte aus Invar

Invar wurde zunächst verwendet, um billige Massen- und Längenstandards herzustellen. Außerdem wurde es benutzt, um Präzisionspendeluhren und Chronometer herzustellen. Eine Hälfte von Bimetallen ist häufig aus Invar.

Invar-Legierungen werden für ein weites Spektrum von Produkten eingesetzt, die hohe Längenstabilität bei Temperaturschwankungen erfordern. Beispiele sind Lochmasken für Bildröhren, Glas-Metall-Übergänge, Tanks von Flüssiggasschiffen (Membrantanks), Chip-Basisplatten, Lasergehäuse, Hohlleiter und astronomische und seismographische Instrumente. Durch die Entwicklung einer Methode zum Schweißen von Invar wurden die Anwendungsmöglichkeiten ausgeweitet. In der Geodäsie werden Drähte aus Invar in Präzisionsnivellierlatten sowie zur hochpräzisen Distanzmessung im Kurzstreckenbereich (bis ca. 20 m) verwendet, z. B. im Tunnel- oder Staudammbau. In der Verarbeitung von großen CFK-Bauteilen werden beispielsweise auch in der Luft- und Raumfahrt die entsprechenden Laminierwerkzeuge teilweise aus Invar hergestellt

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.