Impfkristall

Impfkristall

Impfkristalle sind kleine Einkristalle, sie werden als Ausgangskristall für die Züchtung größerer Kristalle eingesetzt.

Datei:Silicon seed crystal puller rod.jpg
Silicium-Impfkristall für das Czochralski-Verfahren, der linke Teil wird in die Schmelze getaucht und dann herausgezogen, die Kerbe rechts dient der mechanischen Halterung

Herstellung

Impfkristalle werden unter Laborbedingungen erzeugt, mit der gleichen Kristallorientierung (z. B. [111]), die auch der fertig gezüchtete Kristall besitzen soll.

Beispiel

Man betrachte z. B. die folgende Reaktionsgleichung:

Alaun(fest)Alaun(gelo¨st)
KCrSO4K++Cr3++SO42

Die Geschwindigkeitskonstante k1 der Hinreaktion ist nach Arrhenius temperaturabhängig:

k1=Aexp(EaktRT),

wobei A eine stoffspezifische Konstante, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\mathrm{akt} die molare Aktivierungsenergie, R die universelle Gaskonstante und T die Temperatur ist.

Mit den gegebenen Konstanten ist erkennbar, dass bei hohen Temperaturen die Geschwindigkeitskonstante zunimmt. Also ist die Hinreaktion schneller geworden, es gehen mehr Ionen in Lösung, es bleibt aber immer noch ein Feststoff zurück. Dieser wird nun abfiltriert, und man erhält als Filtrat die gesättigte Lösung. Beim Abkühlen nimmt die Geschwindigkeitskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_1 wieder ab, die Hinreaktion wird nicht mehr gefördert und die Rückreaktion tritt ein: Es fällt Alaun als Feststoff aus. Dass dieser am Impfkristall adsorbiert und das Kristallwachstum einsetzt, ist sowohl ein sog. kooperativer Effekt als auch eine Folge der Reduktion der Oberflächenenergie an der Impfkristalloberfläche, hervorgerufen durch erniedrigte Galvani-Potentiale.

Verwendung

Mit Hilfe von Impfkristallen kann man übersättigte Lösungen oder Schmelzen zur Kristallisation bringen. Dabei dienen die Impfkristalle als Kristallisationskeime, an denen sich Substanz aus der Lösung bzw. Schmelze abscheidet. Diesen Vorgang bezeichnet man als Animpfen (englisch seeding). Bei der Kristallisation von Proteinen unterscheidet man je nach Größe der Impfkristalle zwischen Micro Seeding und Macro Seeding. Das praktische Vorgehen wird beim Czochralski-Verfahren beschrieben.

Für die Züchtung von Einkristallen ist es notwendig, dass der Impfkristall kristallchemisch identisch mit dem zu gewinnenden Reinstoff ist. Bei Impflegierungen ist es hingegen ausreichend, wenn chemisch nahe verwandte Kristalle zum Impfen benutzt werden. Auf grund der Kristallstruktur der Kristallorientierung ist die Form und Ausrichtung der Impfkristalle ausschlaggebend für das Aussehen der gezüchteten größeren Kristalle.

Meistens werden Impfkristalle in der Halbleiterindustrie eingesetzt, um den Einkristall für Wafer zu züchten, welche beispielsweise als Träger für Photovoltaik-Produkte, Integrierte Schaltungen oder Transistoren genutzt werden.