Kristallorientierung

Erweiterte Suche

Unter Kristallorientierung versteht man die Angabe, wie ein konkreter Kristall oder auch nur eine seiner Oberflächen bezüglich seiner inneren Struktur orientiert ist, ob also seine Außenfläche parallel zu einer der (beispielsweise) Würfelflächen seiner Elementarzelle liegt oder sogar der ganze Kristall als solcher so orientiert ist. Die Angabe wird üblicherweise mit millerschen Indizes ausgedrückt, man spricht beispielsweise von (111)- oder (110)-Ebenen (und Ausrichtungen parallel oder senkrecht dazu).

Die Angabe einer Orientierung ist nur für einen Einkristall sinnvoll. Es muss sich also nicht nur um einen Festkörper, sondern auch noch um einen durchgehend einheitlich orientierten Körper handeln. Bei vielkristallinen Festkörpern bezeichnet man die Gesamtheit der Orientierungen als Textur, die man z. B. als Orientierungsdichteverteilungsfunktion angeben kann.

Herkunft

Salzkristalle (kubisch)

Es gibt vor allem zwei Quellen für Einkristallmaterial mit definierter Orientierung: natürliche Kristalle mit offensichtlicher Orientierung (Beispiel: NaCl-Kristalle im kubischen Kristallsystem, die auch als makroskopische Würfel kristallisieren) oder mit Hilfe von Impfkristallen künstlich hergestellte Einkristalle, vor allem mit dem Czochralski-Verfahren. Ein weiteres Herstellungsverfahren ist das Zonenschmelzverfahren.

Messung

Liegt ein Einkristall unbekannter Orientierung vor, gibt es verschiedene Wege, seine exakte Orientierung zu ermitteln.

Silicium-Einkristall mit „Naht“ etwas links der Mitte

Bei Kristallen, die nach dem Czochralski-Verfahren hergestellt sind, ist die Orientierung erkennbar an senkrechten Nähten an der Außenseite, die sich deutlich vom eigentlich runden Kristallkörper abheben. Durch die ständige Rotation bei diesem Herstellungsverfahren wird der Kristall zwar überwiegend rund zylindersymmetrisch, in den ausgezeichneten Symmetrierichtungen lagern sich neue Atome aber besonders gut an, so dass hier ein zusätzlicher Auftrag erfolgt. Je nach Orientierung der senkrechten Rotationsachse, also die [100]-, [110]-, [111]-Richtung im Kristall, bilden sich drei oder vier Nähte auf dem Umkreis heraus.

Quantitative Messungen zur Orientierung führt man mit röntgenographischen Methoden durch, vor allem mit dem Laue-Verfahren. Bei kleinsten Kristallen werden elektronenmikroskopische Beugungsverfahren eingesetzt, wie Electron Backscatter Diffraction (EBSD), Kossel- oder Kikuchi-Diagramme.

Ein mehr qualitatives Messverfahren besteht darin, die polierte Kristalloberfläche anzuätzen. Dabei bilden sich sogenannte Ätzgrübchen. Diese haben die Form von auf dem Kopf stehenden Hohlpyramiden, und zwar je nach Orientierung der Oberfläche drei- oder vierzähliger, also mit dreieckiger oder quadratischer (rechteckiger) Grundfläche. Wer nicht zu viel wegätzen will, muss diese Untersuchung mit dem Mikroskop vornehmen.

Anwendung

Breite Anwendung finden Kristalle definierter Orientierung in Schwingquarzen. Hier entscheidet sie maßgeblich über die Temperaturkonstanz der Schwingfrequenz und damit über die Langzeitgenauigkeit beispielsweise damit aufgebauter Uhren. Der „AT-Schnitt“ ist eine der bevorzugten Konfigurationen.

In der Wissenschaft benötigt man Einkristalle verschiedener Orientierung, wenn man Messungen anstellt, die Details zum Bändermodell des verwendeten Materials ermitteln sollen. Wenn dazu Spektroskopie mit polarisiertem Licht in bekannter Ausrichtung zur Orientierung des Kristallmaterials betrieben wird, können gezielt Bandeigenschaften in den einzelnen Symmetrierichtungen des Materials bestimmt werden.

Durch kristallorientierungsabhängiges Ätzen (Unterätzung des Substratmaterials) freigelegte Greifarme

In der Technik spielt das Wissen um die Orientierung von Kristallen eine große Rolle. Das Basismaterial (Substrat) in der Halbleitertechnik sind hochreine Siliciumeinkristalle, die in Form von dünnen Scheiben (Wafer) bearbeitet werden. Für verschiedene Bearbeitungstechnologien ist es dabei wichtig, die Kristallorientierung zu kennen. So kann sich beispielsweise bei der Dotierung durch Ionenimplantation eine Vorzugsrichtung beim Durchqueren der Ionen im Substrat ausbilden, der sogenannte Gitterführungseffekt. Dieser verhindert eine genaue Prozessführung, da das Profil der Eindringtiefen nicht mehr genau berechenbar ist. Zur Abhilfe kann das Substrat leicht verkippt werden, wodurch nur noch die berechenbare Streuung der Ionen im Kristall wirkt – Standard sind (100)-Siliciumwafer beispielsweise um ca. 7° verkippt, alternativ werden dünne Streuschichten aus Siliciumdioxid aufgetragen. Ein anderes Beispiel ist das kristallorientierungsabhängige Nassätzen von Silicium mit Kaliumhydroxid-Lösung in der Mikrosystemtechnik. Hier können je nach Kristallorientierung des Substrates bzw. dessen Oberfläche und Maskierung unterschiedliche Mechanikelemente erzeugt werden.

Literatur

  •  Charles Kittel: Einführung in die Festkörperphysik. 14. Auflage. Oldenbourg, 2005, ISBN 3-486-57723-9.
  •  Werner Schatt, Hartmut Worch: Werkstoffwissenschaft. 9. Auflage. Wiley-VCH, 2003, ISBN 3-527-30535-1.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
30.12.2021
Sonnensysteme | Planeten
Rekonstruktion kosmischer Geschichte kann Eigenschaften von Merkur, Venus, Erde und Mars erklären
Astronomen ist es gelungen, die Eigenschaften der inneren Planeten unseres Sonnensystems aus unserer kosmischen Geschichte heraus zu erklären: durch Ringe in der Scheibe aus Gas und Staub, in der die Planeten entstanden sind.
27.12.2021
Elektrodynamik | Festkörperphysik
Sp­lish Splash im He­li­um­bad
Bei der Arbeit mit Helium-Nanotröpfchen sind Wissenschaftler auf ein überraschendes Phänomen gestoßen: Treffen die ultrakalten Tröpfchen auf eine harte Oberfläche, verhalten sie sich wie Wassertropfen.
22.12.2021
Quantenphysik
Quantenmurmeln in der Lichtschüssel
Von welchen Faktoren hängt es ab, wie schnell ein Quantencomputer seine Berechnungen durchführen kann?
21.12.2021
Galaxien | Sterne
Neue Klasse galaktischer Nebel entdeckt
Einem internationalen Forschungsteam von Astronomen ist es gemeinsam mit einer Gruppe deutsch-französischer Hobby-Astronomen gelungen, eine neue Klasse von galaktischen Nebeln zu identifizieren.
20.12.2021
Raumfahrt | Physikdidaktik
Science-Fiction nachgerechnet: Der Ramjet-Antrieb
In Science-Fiction-Geschichten über Kontakt mit außerirdischen Zivilisationen gibt es ein Problem: Mit welcher Art von Antrieb soll es möglich sein, die gewaltigen Distanzen zwischen den Sternen zu überbrücken?
20.12.2021
Milchstraße | Sterne
Ein gigantisches Band aus Rohmaterial für neue Sterne
Eine Gruppe von Astronominnen und Astronomen haben in der Milchstraße mit rund 3900 Lichtjahren eine der längsten bekannten Strukturen identifiziert, die fast ausschließlich aus atomarem Wasserstoffgas besteht.
13.12.2021
Sterne | Relativitätstheorie
Einstein erneut erfolgreich
Ein internationales Forscherteam hat in einem 16 Jahre dauernden Experiment Einsteins allgemeine Relativitätstheorie mit einigen der bisher rigidesten Tests überprüft.