Hydroxide

Erweiterte Suche

(Weitergeleitet von Hydroxid)
Dieser Artikel beschreibt die Stoffgruppe der Hydroxide. Für das Ion siehe Hydroxidion.
Metallhydroxidniederschläge: Eisen(III)-, Kupfer(II)-, Kobalt(II)- und Zinn(II)-hydroxid

Hydroxide sind salzähnliche Stoffe, die Hydroxid-Ionen ([OH]) als negative Gitterbausteine (Anionen) enthalten. Lösliche Hydroxide wie Natriumhydroxid und Kaliumhydroxid bilden mit Wasser stark alkalische Lösungen (Laugen), die unter der Bezeichnung Natronlauge und Kalilauge bekannt sind. Weniger gut lösliche Hydroxide, z. B. Bariumhydroxid und Calciumhydroxid bilden mit Wasser schwach alkalische Suspensionen. Die gesättigten Lösungen bezeichnet man als Barytwasser und Kalkwasser. Wenn diese beiden Stoffe mit Kohlenstoffdioxid in Berührung kommen, trüben sie sich. Im Chemielabor werden Metall-Hydroxide in der Regel hergestellt, indem Salzlösungen mit Natron- oder Kalilauge versetzt und die Niederschläge anschließend abfiltriert, gewaschen und an Luft getrocknet werden. Zum Teil bilden sich nicht die reinen Hydroxide sondern nach der Fällung Oxidhydroxide, wie Eisen(III)-oxidhydroxid.

Reaktionsgleichung

$ \mathrm {Metalloxid+Wasser\longrightarrow Metallhydroxid} $

Beispiel:

$ \mathrm {Na_{2}O+H_{2}O\longrightarrow 2\ NaOH} $
Natriumoxid und Wasser reagieren zu Natriumhydroxid.
$ \mathrm {CaO+H_{2}O\longrightarrow Ca(OH)_{2}} $
Calciumoxid und Wasser reagieren zu Calciumhydroxid.

Struktur wässriger Hydroxidlösungen

In wässriger Lösung ist das Hydroxidion in der Regel von vier bis fünf Wassermolekülen umgeben. Dabei sind vier Wassermoleküle so um das Sauerstoff-Atom des OH angeordnet, dass sie jeweils eine Wasserstoffbrücke zu diesem ausbilden können (sie zeigen also mit einem ihrer Wasserstoffatome auf das OH). Diese vier Wassermoleküle befinden sich näherungsweise in einer Ebene mit dem OH-Ion, also in einer anderen Geometrie als bei der (wie bei sp3-Hybridisierung erwartet) annähernd tetraedrischen Anordnung der Elektronenpaare im Wasser und im H3O+. Das OH-Ion kann mit seinem Proton auch eine – allerdings schwache – Wasserstoffbrücke ausbilden, so dass die Komplexe [OH(H2O)4] und [OH(H2O)5] auftreten, je nachdem, ob diese ausgebildet ist oder nicht. Aus diesem Grunde sind Hydroxide oft sehr voluminös und sedimentieren - anders als kristalline Fällungsprodukte - nur sehr langsam.

Fällung / Bildung von Hydroxiden

Fällung von Mangan(II)-hydroxid mit teilweiser Oxidation zu braunem Mangan(III)- bzw. Mangan(IV)-oxidhydroxid durch Luftsauerstoff

Metall-Hydroxide bilden sich in einem bestimmten pH-Wert-Bereich, der abhängig vom Löslichkeitsprodukt des Hydroxides und der Konzentration des zu fällenden Kations ist. Beispielsweise gilt für ein zweiwertiges Metallion folgende Reaktionsgleichung:

$ \mathrm {Me^{2+}+2\ OH^{-}\longrightarrow Me(OH)_{2}} $
Die folgende Darstellung zeigt den Fällungs-pH-Bereich verschiedener Hydroxide wobei der erste pH-Wert den Beginn der Fällung und der zweite pH-Wert die vollständige Abscheidung markiert:[1]
einwertig
Metall-Hydroxid pH-Bereich
  AgOH   8,3–11,3
zweiwertig
Metall-Hydroxid pH-Bereich
  Ca(OH)2  12,4–13,9
  Mg(OH)2  9,6–11,1
  Fe(OH)2  8,3–9,8
  Ni(OH)2  8,1–9,6
  Cd(OH)2    8,1–9,6
  Mn(OH)2  7,9–9,4
  Pb(OH)2  7,2–8,7
  Co(OH)2    7,2–8,7
  Zn(OH)2  6,6–8,1
  Be(OH)2    5,7–7,2
  Cu(OH)2  5,1–6,6
  Sn(OH)2  2,4–3,9
dreiwertig
Metall-Hydroxid pH-Bereich
  Cr(OH)3    4,6–5,6
  Al(OH)3  3,8–4,8
  Fe(OH)3  2,2–3,2
  Sb(OH)3    0,9–1,9

Amphotere Hydroxide gehen bei höheren pH-Werten wieder in Lösung. Beispiel:

$ \mathrm {Al(OH)_{3}+OH^{-}\longrightarrow \ [Al(OH)_{4}]^{-}} $

Einige Metallhydroxide werden nach der Fällung durch Luftsauerstoff zu Hydroxiden mit einer höheren Oxidationszahl oxidiert. So wird Mangan(II)-hydroxid schnell zu Mangan(III)- bzw. Mangan(IV)-oxidhydroxid umgewandelt, was man in der Oxymetrie zur Fixierung von Sauerstoff ausnutzt. Ähnlich wird frisch gefälltes grünes Eisen(II)-hydroxid durch anwesenden Luftsauerstoff zu braunem Eisen(III)-oxidhydroxid oxidiert:[1]

$ \mathrm {4\ Fe(OH)_{2}+O_{2}\longrightarrow 4\ FeO(OH)+2\ H_{2}O} $

Hydroxide in der organischen Chemie

In der organischen Chemie werden Hydroxidionen als Nucleophile eingesetzt. Die Umsetzung von geeigneten Brom- oder Chloralkanen mit Natronlauge oder Kalilauge liefert Alkanole und das entsprechende Alkalihalogenid. Als Konkurrenzreaktion zu dieser Substitutionsreaktion kann auch eine Eliminierung stattfinden, die zu Alkenen führt.[2]

Einzelnachweise

  1. 1,0 1,1 Jander Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie, 14. Auflage, S. Hirzel, Stuttgart-Leipzig 1995.
  2. Ivan Ernest: Bindung, Struktur und Reaktionsmechanismen in der organischen Chemie, Springer-Verlag, 1972, S. 147–148, ISBN 3-211-81060-9.

Die cosmos-indirekt.de:News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.