Hohenberg-Kohn-Theorem

Hohenberg-Kohn-Theorem

Artikel fehlen folgende wichtige Informationen: Theorem für einen entarteten Grundzustand
Du kannst Wikipedia helfen, indem du sie recherchierst und einfügst, aber bitte kopiere keine fremden Texte in diesen Artikel.

Das Hohenberg-Kohn-Theorem (nach Walter Kohn und Pierre Hohenberg) besagt, dass es zu einem Potential $ V({\vec {r}}) $ im Grundzustand eines Systems von N Elektronen nur eine Elektronendichteverteilung $ n({\vec {r}}) $ gibt. In dieser Formulierung gilt das Hohenberg-Kohn-Theorem nur für einen nicht entarteten Grundzustand. Dadurch ergibt sich eine Vereinfachung, da man statt mit 3N Variablen nur noch mit 3 Variablen rechnen muss. Das Hohenberg-Kohn-Theorem ist eine wichtige Grundlage der Dichtefunktionaltheorie (DFT), die z. B. Anwendung in quantenchemischen Berechnungen von Molekülen und Festkörpern findet.

Beweis (reductio ad absurdum)

Annahme: Grundzustand $ \Psi _{1} $ nicht entartet mit Hamiltonoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat H_1 und Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_1(\vec r)

Es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_1 = \langle \Psi_1|\hat H_1|\Psi_1 \rangle = \int V_1(\vec r) n(\vec r) \, \mathrm{d^3}r + \langle \Psi_1|(\hat T + \hat U)|\Psi_1 \rangle

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat T : kinetische Energie, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat U beschreibt die Wechselwirkung der Elektronen

Zu widerlegende Behauptung: Es gibt ein Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_2(\vec r) \ne V_1(\vec r) , das zur selben Dichte führt.


Mit dem Rayleigh-Ritz-Prinzip folgt, wenn sich die Systeme nur durch das Potential unterscheiden:

$ E_{1}<\langle \Psi _{2}|{\hat {H}}_{1}|\Psi _{2}\rangle =\langle \Psi _{2}|{\hat {H}}_{2}|\Psi _{2}\rangle +\langle \Psi _{2}|{\hat {H}}_{1}-{\hat {H}}_{2}|\Psi _{2}\rangle =E_{2}+\int (V_{1}({\vec {r}})-V_{2}({\vec {r}}))n({\vec {r}})\,\mathrm {d^{3}} r $

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi_2 die Grundzustandswellenfunktion zum Hamiltonoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat H_2 .

Analog ergibt sich:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_2 < \langle \Psi_1|\hat H_2|\Psi_1 \rangle = E_1 + \int ( V_2(\vec r)-V_1(\vec r) ) n(\vec r)\, \mathrm{d^3}r

Durch Addition der beiden Ungleichungen folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_1 + E_2 < E_1 + E_2

Die Annahme war also falsch und das Hohenberg-Kohn-Theorem ist damit bewiesen.

Zwei Theoreme

Es handelt sich eigentlich um zwei H-K Theoreme. Das erste zeigt die Existenz einer eineindeutigen Abbildung zwischen der Grundzustands-Elektronendichte und der Grundzustands-Wellenfunktion des Vielteilchen-Systems für einen nicht entarteten Grundzustand. Das zweite Theorem beweist, dass die Grundzustandsdichte die Gesamtenergie des Systems minimiert.

Literatur

  • P. Hohenberg and W. Kohn: Inhomogeneous Electron Gas. Phys. Rev. 136 (1964) B864-B871