Bispidin

Strukturformel
Strukturformel von Bispidin
Allgemeines
Name Bispidin
Andere Namen

3,7-Diazabicyclo[3.3.1]nonan

Summenformel C7H14N2
CAS-Nummer 280-74-0
PubChem 192720
Eigenschaften
Molare Masse 126,20 g·mol−1
Schmelzpunkt

158-161 °C[1]

Siedepunkt

190-195 °C (9 Torr)[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Bispidin ist eine bicyclische, heterocyclische Verbindung, deren systematischer Name 3,7-Diazabicyclo[3.3.1]nonan lautet.

Vorkommen

Bispidin bildet den Grundkörper einiger Alkaloide wie z. B. Spartein[4] und Cytisin[5].

Darstellung

Die Synthese von Bispidin kann über eine durch Raney-Nickel katalysierte Hydrierung von Pyridin-3,5-carbonitril erfolgen.[6] Eine mehrstufige Synthese geht vom Pyridin-3,5-dicarboxyethylester aus, der zunächst über Platinoxid zum Piperidin-3,5-dicarboxyethylester hydriert wird. Eine Reduktion mittels Lithiumaluminiumhydrid ergibt dann 3,5-Bis(hydroxymethyl)-piperidin. Durch nucleophile Substitution wird der Dialkohol zunächst in das Dibromid und dann in das Diamid überführt, welches zur Zielverbindung zyklisiert.[7] Bispirin synthesis 1.svg

Eine neuere Synthese geht von Allylamin und Ethylacrylat aus, wo zunächst in einer doppelten Mannich-Reaktion über 1-Allylpiperidin-4-on das N,N'-Diallylbispidinon gebildet wird. Eine anschließende Wolff-Kishner-Reduktion und Deallylierung mit Chlorameisensäureethylester ergibt das Bispidin.[1]

Bispidinderivate können zum Beispiel durch selektive Michael-Additionen dargestellt werden.[8][9][10]

Eigenschaften

Bispidin ist ein weißer kristalliner Feststoff, der schon ab 135 °C zu sublimieren beginnt.[11] Im geschlossenen Röhrchen kann ein Schmelzpunkt bei 158-161 °C beobachtet werden.[1]

Die Umsetzung mit Formaldehyd ergibt das Diazaadamantan.[7]

Diazaadamantane synthesis 1.svg

Verwendung

Bispidinderivate finden Anwendung in der Chemie als Chelatliganden[12] für Übergangsmetalle.

Einzelnachweise

  1. 1,0 1,1 1,2 Y. Miyahara, K. Goto, T. Inazu: Convenient Synthesis of 3,7-Diazabicyclo[3.3.1]nonane (Bispidine) in Synthesis 2001, 364–366, doi:10.1055/s-2001-11427.
  2. H. Stetter, R. Merten: Über Verbindungen mit Urotropin-Struktur, IX. Zur Kenntnis des Bispidins in Chem. Ber. 90 (1957) 868–875, doi:10.1002/cber.19570900605
  3. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  4. D. Hoppe, T. Hense: Enantioselektive Synthese mit Lithium/(−)-Spartein-Carbanion-Paaren in Angew. Chem. 109 (1997) 2376–2410, doi:10.1002/ange.19971092105.
  5. D. Stead, P. O’Brien, A. J. Sanderson: Concise Synthesis of (±)-Cytisine via Lithiation of N-Boc-bispidine in Org. Lett. 7 (2005) 4459–4462, doi:10.1021/ol0516869.
  6. F. Bohlmann, N. Ottawa, R. Keller: Aufbau des Tetrahydro-chinolizons und des „Bispidins” Beiträge zur Synthese des Cytisins in Liebigs Ann. Chem. 587 (1954) 162–176, doi:10.1002/jlac.19545870210.
  7. 7,0 7,1 F. Galinovsky, H. Langer: Synthese des 1,3-Diaza-adamantans und des Bispidins in Monatshefte für Chemie 86 (1955) 449–453, doi:10.1007/BF00903631.
  8. M. Breuning, M. Steiner: Convenient Multigram Synthesis of (R)-Homopipecolic Acid Methyl Ester in Synthesis 2006, 1386–1389, doi:10.1055/s-2006-926419.
  9. M. Breuning, D. Hein: First asymmetric synthesis of a C2-symmetric 2-endo,6-endo-disubstituted bispidine in Tetrahedron Asym. 18 (2007) 1410–1418, doi:10.1016/j.tetasy.2007.06.010.
  10. Uni-Würzburg: Chirale Bispidine und 9-Oxabispidine
  11. F. Galinovsky, F. Sparatore, H. Langer: Eine neue Synthese des Tetrahydro-desoxy-cytisins. Zur Kenntnis des Bispidins in Monatshefte für Chemie 87 (1956) 100–105, doi:10.1007/BF00903593
  12. P. Comba, M. Maurer, P. Vadivelu: Oxidation of Cyclohexane by High-Valent Iron Bispidine Complexes: Tetradentate versus Pentadentate Ligands in Inorg. Chem. 48 (2009) 10389–10396, doi:10.1021/ic901702s.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.