Williamson-Ethersynthese

(Weitergeleitet von Williamson-Ether-Synthese)

Die Williamson-Synthese (siehe auch Ethersynthese) dient der Herstellung von symmetrischen und unsymmetrischen Ethern. Sie wurde bereits im 19. Jahrhundert durch ihren Namensgeber Alexander William Williamson entwickelt.[1] Die Williamson-Synthese ist ein Sonderfall der nucleophilen Substitution (SN), bei dem als Nucleophil ein Alkoholat (Alkyl-O, Aryl-O etc.) eingesetzt wird. Der Reaktionsmechanismus entspricht einer SN1- oder SN2-Reaktion.

Reaktionsschema der Williamsonschen Ethersynthese

Die Williamson-Ethersynthese ist in ihrer technischen Durchführung ein zweistufiger Prozess. Zunächst muss aus der Alkoholkomponente ein Alkoholat hergestellt werden, zumeist durch Umsetzung des Alkohols mit elementarem Natrium oder Kalium. Alternativ kann auch mit den entsprechenden Hydriden Natriumhydrid oder Kaliumhydrid gearbeitet werden. Letztere Variante hat den Vorteil, dass die Hydride an feuchter Luft stabiler sind und als pulverförmige Stoffe besser wägbar sind.

In einem zweiten Schritt wird das Alkoholat mit dem Elektrophil umgesetzt. Als Elektrophile werden häufig die Alkylchloride, Alkylbromide oder Alkyliodide verwendet, auch Sulfonsäureester wie die der p-Toluolsulfonsäure oder der Methansulfonsäure sind gebräuchlich.

Ein geeignetes Lösungsmittel für die Reaktion ist entweder der Alkohol selbst oder ein anderes polares Lösungsmittel wie Dimethylsulfoxid (DMSO), Dimethylformamid (DMF) oder Hexamethylphosphorsäuretriamid (HMPT).

Da die Ether oft flüchtige Verbindungen sind, können sie meist während der Reaktion aus dem Reaktionsgemisch fortlaufend abdestilliert werden.

Die Williamson-Ethersynthese gelingt in der Regel nicht mit tertiären Halogenalkanen. Beim Versuch, sie mit Alkoholaten zu Ethern umzusetzen, entsteht das Eliminierungsprodukt. So entsteht beispielsweise aus der Reaktion von 2-Iod-2-methylpropan mit Natriummethanolat das 2-Methyl-prop-1-en (Isobuten) und nicht der Ether:

Eliminierung statt Substitution

Ein Ether lässt sich auf diese Weise nur herstellen, wenn man den tertiären Alkylrest als Alkoholat-Komponente einsetzt.

Ein Spezialfall der Williamson-Ethersynthese ist die Verwendung von Silber(I)-oxid zum Verethern von Alkoholen und Alkylhalogeniden.[2][3]

Williamson silveroxid.svg

Literatur

  • Organikum, 16. Auflage, VEB Deutscher Verlag der Wissenschaften Berlin 1985, S. 198 ISBN 3-326-00076-6.

Einzelnachweise

  1. Henry M. Leicester, Herbert S. Klickstein: In "Theory of Aetherification". Philosophical Magazine 1850, 37, 350–356.
  2. Masato Tanabe, Richard H. Peters: In „(R,S)-MEVALONOLACTONE-2-13C“ Organic Syntheses, Coll. Vol. 7, S. 386 (1990); Vol. 60, S. 92 (1981).
  3. Organic Syntheses, Coll. Vol. 7, S. 386 (1990); Vol. 60, S. 92 (1981). Link

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.