Wellenvektor

Wellenvektor

Der Wellenvektor ist in der Physik ein Vektor, der senkrecht auf der Wellenfront einer Welle steht. Er hat die Einheit 1/m. In Formeln wird für ihn üblicherweise das Zeichen $ {\vec {k}} $ gewählt. In den meisten Fällen gibt er die Ausbreitungsrichtung der Welle an. Bei elektromagnetischen Wellen in bestimmten Medien kann jedoch die Richtung des Poynting-Vektors für den Energiefluss vom Wellenvektor abweichen.

Beschreibung

Eine ebene Welle, die sich in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec k -Richtung ausbreitet, lässt sich in der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi (\vec r,t) = A e^{i(\vec k\vec r - \omega t)}

schreiben.

Mit den Komponenten in x-, y- und z-Richtung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{k} = (k_x, k_y, k_z)

zeigt der Wellenvektor im 3-dimensionalen k-Raum, auch reziproker Raum genannt, in eine bestimmte Richtung.

Der Betrag des Wellenvektors ist die Kreiswellenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k , daher auch die Bezeichnung Wellenzahlvektor. Es ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k = |\vec{k}| = \frac{\omega}{c}=\frac{2 \pi}{\lambda},

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega die Kreisfrequenz, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c die Phasengeschwindigkeit und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda die Wellenlänge ist.

Wellenvektor und Quantenzahlen

Der Wellenvektor ist nicht immer quantisiert. So kann die Wellenlänge von Licht im Vakuum jeden positiven Wert annehmen.

Anders verhält es sich mit Teilchen in einem endlichen Raum, beispielsweise in einem Potentialtopf oder einem Elektron in einem Festkörper. Hier sind die erlaubten Wellenvektoren quantisiert, wenngleich sie selbst keine Quantenzahlen darstellen. Der Wellenvektor ist vielmehr eine Funktion von Quantenzahlen, bzw. können seine möglichen Werte durch Quantenzahlen abgezählt werden. Dies ist in Analogie zu den Eigenenergien eines quantenmechanischen Problems mit einem diskreten Spektrum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_n zu sehen: Der Index n der diskreten Energie ist die Quantenzahl, nicht jedoch die Energie selbst.

Veranschaulichung: Die Lösungen der Schrödingergleichung eines dreidimensionalen, unendlich hohen Potentialtopfs lauten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi_{n_x,n_y,n_z}(x,y,z)\propto\sin\left( k_x x \right) \cdot \sin\left( k_y y\right) \cdot \sin\left( k_z z \right)

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_i = \frac{n_i\pi}{a_i} \quad \mathrm{f\ddot{u}r} \quad i=x,y,z.

Die Zustände des Teilchens, das als Welle beschrieben wird, sind also durch die Quantenzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_x , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_y und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_z charakterisiert. Anstatt einen Zustand durch dieses Zahlentripel zu benennen, kann auch der Wellenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec k=(k_x,k_y,k_z) verwendet werden. Jedoch darf dieser oder einer seiner Komponenten nicht als Quantenzahl bezeichnet werden, weil der Wellenvektor zum einen dimensionsbehaftet ist und zum anderen durch reelle Zahlen dargestellt ist.

Bei einem Potentialtopf mit $ n $ Teilchen ergeben sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n Vektoren im k-Raum. Wenn es sich um Elektronen, also Fermionen handelt, gibt es pro Wellenvektor zwei Zustände, die sich im Spin unterscheiden.

Wellenvektor und Impuls

Bei Photonen (Einstein-Gleichungen) sowie bei Materiewellen (De-Broglie-Relation) gibt der Wellenvektor über einen einfachen, zum reduzierten Planckschen Wirkungsquantum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar proportionalen Zusammenhang deren vektoriellen Impuls an:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec p = \hbar \vec k