Wannier-Darstellung
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Festkörperphysik
Die nach dem schweizer Physiker Gregory Hugh Wannier benannte Wannier-Darstellung ist ein Begriff aus der Festkörperphysik. In der Tight-Binding-Näherung ist eine Beschreibung der elektronischen Wellenfunktionen in der gitterperiodischen Bloch-Basis nicht mehr sinnvoll. Eher konstruiert man die Zustandsfunktion aus atomaren Wellenfunktionen. Diese sind aber nicht orthonormiert. Es lässt sich jedoch eine Orthonormal-Basis lokalisierter Zustände aus den Bloch-Funktionen konstruieren.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega_{i n}(\vec r -\vec R_i) = \frac{1}{\sqrt{N}}\sum_k e^{-i \vec k \vec R_i} \psi_{n \vec k} (\vec r) .
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{n \vec k} (\vec r ) eine Bloch-Funktion und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega_{i n} (\vec r -\vec R_i) der zugehörige Wannier-Zustand. Die umgekehrte Konstruktion der Bloch-Zustände aus den Wannier-Zuständen heißt dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{n \vec k} (\vec r) = \frac{1}{\sqrt{N}}\sum_{\vec R_i} e^{i \vec k \vec R_i} \omega_{i n}(\vec r -\vec R_i).
Je größer die Gitterkonstante ist, desto stärker sind die Wannierzustände lokalisiert. Sie nähern sich immer mehr an die atomaren Zustände an. Statt aber den Wannier-Zustand einfach einem atomaren Zustand gleichzusetzen, nähert man ihn durch eine Linearkombination von atomaren Zuständen (LCAO):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega_{i n}(\vec r -\vec R_i) = \sum_{n\in U} a_n \varphi_n (\vec r -\vec R_i).
Die Menge U stellt dabei einen Unterraum der atomaren Zustände Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_n(\vec r -\vec R_i) dar.
Literatur
- Neil W. Ashcroft, N. David Mermin: Festkörperphysik. 2. Auflage. Oldenbourg, München 2005, ISBN 3-486-57720-4.
- Konrad Kopitzki: Einführung in die Festkörperphysik. 6. Auflage. Teubner, Wiesbaden 2007, ISBN 3-8351-0144-7.
- Gerd Czycholl: Theoretische Festkörperphysik. 3. Auflage. Springer, Berlin 2008, ISBN 978-3-540-74789-5.