Teilchen auf dem Ring
Das Teilchen auf dem Ring ist eines der verschiedenen Modellsysteme aus der Quantenmechanik, welches zur Quantisierung der Energie führt. Es ist dem Teilchen im Kasten sehr ähnlich und wird daher auch als „Teilchen im kreisförmigen Potentialkasten“ bezeichnet.
Im Unterschied zum Teilchen im Kasten bewegt sich das Teilchen auf dem Ring jedoch nicht linear, sondern kreisförmig potentialfrei um einen bestimmten Punkt. Deshalb ist es günstiger mit Polar- als mit Kartesischen Koordinaten zu rechnen. Das Teilchen bewegt sich um einen bestimmten Radius
Mathematische Betrachtung
Um die Wellenfunktionen und die Energien der Zustände des Teilchens auf dem Ring zu finden ist es nötig die stationäre Schrödingergleichung im gegebenen Potential zu lösen. Das Potential ist gegeben durch
Der Hamilton-Operator lässt sich in Polarkoordinaten für den relevanten Bereich als
schreiben, wodurch sich die zu lösende Schrödingergleichung ergibt:
Es handelt sich also um eine gewöhnliche, lineare, homogene Differentialgleichung 2. Ordnung, für die der Lösungsansatz lautet
Durch Einsetzen in die Schrödingergleichung erhält man
Um die Differentialgleichung eindeutig zu lösen ist nun noch eine Randbedingung notwendig. Nach einer Umdrehung auf dem Ring, muss die Wellenfunktion wieder dieselbe sein:
was zu folgender Bedingung führt:
Diese Bedingung ist nur erfüllt, wenn
Nun muss die Wellenfunktion noch normiert werden, was geschieht indem man über das Betragsquadrat der Wellenfunktion von
um. Da der Betrag einer komplexen Zahl
wodurch sich
Entartung
Neben der Quantisierung führt dieses relativ einfach zu rechnende Beispiel zum ersten Mal auf das Konzept der Entartung. Da Zustände bei denen sich