Sphärolith

Dieser Artikel behandelt die Bedeutung in der Polymerphysik. Für das mineralische Aggregat in der Petrologie siehe Sphärolith (Petrologie)
Sphärolithstrukturen von Polyamid 6.6 im Polarisationskontrast

Der Begriff Sphärolith (von altgriechisch σφαίρα sphaira „Kugel“ und altgriechisch λίθος líthos „Stein“) bezeichnet allgemein ein kugeliges oder strahliges Kristallaggregat. In der Polymerphysik wird als Sphärolith eine für thermoplastische Kunststoffe typische kristalline Überstruktureinheit bezeichnet. Kunststoffe sind aus Makromolekülen aufgebaut, die amorphe oder kristalline Phasen bilden können. Diese können wiederum zu noch größeren Struktureinheiten aggregieren. Sind diese radialsymmetrisch ausgeprägt, so spricht man von Sphärolithen. Die Größe und die Anzahl der Sphärolithe in einem Polymer beeinflusst die Eigenschaften des Kunststoffs.

Entstehung

Hauptartikel: Kristallisation (Polymer)

Sphärolithe können sich beim Abkühlen von Schmelzen thermoplastischer Kunststoffe bilden. Die Neigung zur Kristallisation ist von der Polymerart, d.h. von der Anordnung der Atome, bzw. der funktionalen Gruppen in der Molekülkette abhängig. Beispiele für Polymere, die Sphärolithstrukturen ausbilden können, sind: Polyamid 6, Polypropylen (PP), Polyoxymethylen (POM), Polyethylen (PE) oder Polybutylenterephthalat (PBT). In diesen Polymeren können sich Molekülketten regelmäßig zueinander anordnen und damit eine Art Kristall bilden.[1]

Die kristallinen Strukturen entstehen bevorzugt an Kristallisationskeimen und wachsen von ihrem Zentrum aus gleichförmig in alle Richtungen nach außen. Es bilden sich daher kugelförmige, radialsymmetrische Anordnungen.[2] Ob sich Sphärolithe bilden und wie groß diese werden, hängt von der Art des Polymers und den Abkühlbedingungen in der Schmelze ab.

Bei langsamer Abkühlgeschwindigkeit bilden sich weniger Sphärolithe. Gleichzeitig haben diese aber viel Zeit zu wachsen und sind daher relativ groß. Bei rascher Abkühlung setzt die Kristallisation an vielen Stellen gleichzeitig ein. Da die Kristallisationstemperatur bei rascher Abkühlung schneller unterschritten wird, bleiben die Spärolithe vergleichsweise klein. Bei manchen Polymeren wie zum Beispiel Polyamid (PA) oder Polybutylenterephtalat (PBT) kann eine relativ rasche Abkühlung an der Oberfläche zu einer Schicht mit geringerer Kristallinität oder sogar amorphen Strukturen im Randbereich führen.[1]

Sphärolithe können nur solange wachsen, wie sie von amorphem Material umgeben sind. Werden die Sphärolithe so groß, dass sie sich berühren, so können sie sich in dieser Richtung nicht weiter ausdehnen. Es entstehen dann zwischen den Sphärolithen ebene Flächen.[2]

Einen entscheidenden Einfluss auf die Sphärolithbildung haben Fremdsubstanzen und Verunreinigungen. Sie können als Keimbildner wirken und sorgen so für eine vermehrte Sphärolithbildung. In der Praxis werden daher dem Polymer zum Teil Nukleierungsmittel zugesetzt, um die Kristallisation deutlich zu beschleunigen.[3] Gleichzeitig erfolgt die Erstarrung bei höherer Temperatur, was sich vorteilhaft auf Prozesszeiten beim Spritzguss auswirkt. Typische Konzentrationen von Nukleierungsmitteln liegen bei 0,1-0,5 %. Als Nukleierungsmittel werden häufig unlösliche anorganische Füllstoffe wie Metalloxide, Metallsalze, Silikate oder Bornitrid mit Teilchengrößen von ca. 3 μm dem Polymer beigemischt.[4] Auch Füll- und Verstärkungsmittel und Farbmittel können keimbildend wirken. Daneben gibt es auch als sogenannte "Clarifier" bezeichnete Nukleierungsmittel, die in der Schmelze gelöst sind. Die Nukleierungsdichte ist hier um Größenordnungen höher als bei nicht gelösten Additiven, so dass optisch wesentlich transparentere Materialien entstehen.[4] Nukleierungsmittel werden meist empirisch gefunden und sind auf ein bestimmtes Polymer optimiert, d.h. ein Nukleierungsmittel für zum Beispiel Polypropylen funktioniert nicht unbedingt für Polyethylen.[5]

Aufbau und Struktur

Schematischer Aufbau einer Sphärolith-Struktur

Sphärolithe sind selbst keine Kristalle im kristallografischen Sinne, sondern stellen Aggregate (Anhäufungen) von sehr vielen, kleineren kristallinen Bereichen dar. Dieses konnte bei einzelnen Materialien durch Röntgenbeugung nachgewiesen werden.[2] Die Größe der Sphärolithe alleine sagt weder etwas über die Kristallinität des Werkstoffs (Anteil kristallin zu amorph) noch über die Größe der eigentlichen Kristalle aus.[2] Die Sphärolithgröße ist vielmehr ein Hinweis auf die Kristallisationsbedingungen im Polymer.

Die Kristallite sind radialsymmetrisch um das Zentrum angeordnet. Röntgenbeugungsexperimente kleinster Bereiche haben gezeigt, dass dabei die Polymerketten in den Spärolithen mehr oder weniger tangential angeordnet sind.[2] Der Mechanismus des Wachsens bei dem schrittweise nacheinander Ketten längsseits angelagert werden, entspräche dem Mechanismus der Kristallisation von kurzkettigen Paraffinen.[2] Durch die parallele Anordnung der Ketten kommt es in den Kristallen zu doppelbrechenden Eigenschaften (Formdoppelbrechung), d.h. der Brechungsindex in Radialrichtung unterscheidet sich von der Tangentialrichtung.

Neben sphärolithischen Überstrukturen sind bei manchen Polymeren (zum Beispiel Polypropylen) auch dendritische Überstrukturen bekannt.[6] Sie bilden sich, wenn ein starker Temperaturgradient in der Probe vorliegt. Die Kristallisation beginnt im kälteren Bereich und die kristallinen Bereiche wachsen in Richtung der Bereiche mit höherer Temperatur. Dieses führt zu gerichtetem, dendritischem Kristallwachstum.[6]

Auswirkungen

Polyamid 6.6 mit Bruchbeginn zwischen den Sphärolithstrukturen

Sphärolithe beeinflussen die thermischen Eigenschaften des Polymers (zum Beispiel Schmelzpunkt, Wärmeformbeständigkeit, Schrumpf), die mechanische Festigkeit, sowie zum Teil auch die chemische Beständigkeit und die optischen Eigenschaften.[3]

Sphärolithe erhöhen die Kristallinität eines Polymers. Die kristallinen Anteile sind härter, spröder und besitzen eine höhere Dichte, während die amorphen Anteile duktiler und weniger dicht sind und die Aufgabe der Elastizität im Bauteil übernehmen. [7] Außerdem besitzen sie einen höheren Schmelzpunkt, was zu einer besseren Wärmebeständigkeit des Bauteils führt.

Die Sphärolithe unterscheiden sich in den optischen Eigenschaften von den amorphen Bereichen. Durch Lichtstreuung erscheinen Polymere höherer Kristallinität (sofern sie keine Füllstoffe enthalten) meist etwas milchiger.[7]

Je nach dem Zeitpunkt, zu dem Sphärolithe zusammenstoßen, entstehen sehr feste oder auch gar keine Verbindungen, so dass die Trennflächen zwischen den Sphärolithen ausgeprägte Strukturschwachstellen bilden können. Große Sphärolithe sind also nicht wünschenswert. Man vermeidet sie durch Nukleierung und/oder Unterkühlung, so dass viele Sphärolithe gleichzeitig wachsen.[8]

Eine Verringerung der Sphärolithgröße durch erhöhte Keimbildung führt zu einem größeren Biegemodul und einer erhöhten Fließgrenze sowie einer niedrigeren Bruchdehnung und Duktilität. Durch eine Nukleierung (höherer Anteil von Keimbildnern) wird die Wärmeformbeständigkeit erhöht.[9]

Nachweis

Da Sphärolithe kristalline Bereiche enthalten und damit doppelbrechend sind, lassen sie sich mit Hilfe der Polarisationsmikroskopie nachweisen. Das Erscheinungsbild ist unterschiedlich und abhängig vom verwendeten Polymer. Meist erkennt man sie anhand des typischen Musters („Malteserkreuz“), dessen dunkle Balken parallel zur Polarisationsrichtung von Polarisator und Analysator des Mikroskops ausgerichtet sind.[10] Dreht man das Objekt, so bleibt die Orientierung des Kontrasts trotzdem in der gleichen Raumrichtung bestehen, dreht sich also nicht mit der Probe mit.

Der Sphärolithdurchmesser bezeichnet den größten Durchmesser der 3-dimensionalen Sphärolithe. Die lichtmikroskopisch nachweisbare Größe liegt zwischen 1µm und mehreren 100µm. Bei sehr kleinen Sphärolithen ist das oben beschriebene Muster im Mikroskop nicht mehr zu erkennen. Man erkennt nur noch eine diffuse Streuung des Lichtes.

Weblinks

Video bei YouTube zur Kristallisation von Polypropylen (Sphärolithbildung unter einem Polarisationsmikroskop)

Literatur

Einzelnachweise

  1. 1,0 1,1 Linda C. Sawyer and David T. Grubb: Polymer Microscopy, Chapman and Hall, London, 200-202, ISBN 0-412-25710-6.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 D.A. Hemsley: Applied polymer light microscopy, Elsevier Applied Science, London, 111-149, ISBN 1-85166-335-5.
  3. 3,0 3,1 Nukleierungsmittel, Nemitz Kunststoff-Additive (pdf).
  4. 4,0 4,1 Tim A. Osswald, Ernst Schmachtenberg, Sigrid Brinkmann, Erwin Baur: Saechtling Kunststoff Taschenbuch, Hanser Fachbuch, ISBN 3-446-22670-2 (Leseprobe pdf).
  5. Nukleierungsmittel, Kunststofftechnik Ulrike Lapacz.
  6. 6,0 6,1 Videos und Erklärungen zur dendritischen Kristallisation von Polypropylen (Vorschau kostenlos).
  7. 7,0 7,1 Praktikum Werkstofftechnik, Mikroskopie von Werkstoffgefügen / -strukturen, Institut für Werkstofftechnik – Universität GH Kassel (pdf).
  8. Georg Menges, Edmund Haberstroh, Walter Michaeli, Ernst Schmachtenberg (2002): Werkstoffkunde Kunststoffe Hanser Verlag, ISBN 3-446-21257-4, (Google Books).
  9. W. Lutz: Verbesserte Wärmeformbeständigkeit thermoplastischer Mehrphasenwerkstoffe durch kontrolliertes Kristallwachstum. Institut für Kunststoffkunde und -technik, Universität Stuttgart, 2005 (pdf).
  10. Inga Gurke: Smektische Thermotrope Hauptkettenpolyesterimide. Dissertation, Institut für Makromolekulare und Technische Chemie, Universität Hamburg, 1999 (pdf).
Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 3. Februar 2009 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.