Polycaprolacton

Polycaprolacton (PCL), genauer Poly-ε-Caprolacton, ist ein biologisch abbaubarer Kunststoff, der auf der Basis von Erdöl hergestellt wird. Er ist thermisch verformbar und wird entsprechend in die Thermoplaste eingeordnet. Gebildet wird er als Kette des Caprolacton, dem ε-Lacton der Capronsäure.

Aufbau

Polycaprolacton besteht aus einer Abfolge von Methylen-Einheiten, zwischen denen Estergruppen ausgebildet sind. Durch diesen sehr einfachen Aufbau ist eine beinahe unbeschränkte Rotation der einzelnen Kettenelemente möglich, und die Glas-Übergangstemperatur TG, also die Aushärtetemperatur, ist sehr niedrig. Bei Raumtemperatur ist kurzkettiges, amorphes Polycaprolacton entsprechend weich und gummiartig. Aufgrund der gleichmäßigen Struktur ist es jedoch gut kristallisierbar, wodurch eine Verstärkung des Materials auftritt.

Materialeigenschaften

Kristallines Polycaprolacton ähnelt in der Kristallstruktur dem Polyethylen. Es hat einen Schmelzpunkt bei etwa 63 °C, eine Zugfestigkeit von 26 bis 42 MPa und eine Reißdehnung von 600 bis 1000 %[1]. Die Glas-Übergangstemperatur liegt beim amorphen Polymer bei etwa -70 °C, daher ist es bei Raumtemperatur gummiartig. Allerdings hat Polycaprolacton eine hohe Tendenz zur Kristallisation, die auch bei schneller Abkühlung eintritt und womit sich die Glas-Übergangstemperatur auf etwa -60 °C erhöht. Hat das Polymer eine hohe molare Masse, besteht es also aus vielen Einzelmolekülen, wird es durch die teilweise Kristallisation fest und flexibel, ist die Molekülmasse dagegen niedrig, wird es spröde.

Polycaprolacton ist biologisch abbaubar. Der Abbau erfolgt dabei durch Mikroorganismen, im Regelfall unter Ausschluss von Sauerstoff (anaerob). Das Material ist gut mischbar und verbindet sich auch mit anderen Kunststoffen sowie mit Lignin[2], Gelen, Stärke und anderen Materialien. Außerdem haftet es an einer Vielzahl von Oberflächen. Es ist leicht zu verarbeiten, gut schmelzbar und nicht toxisch.

Synthese

Synthese des Polycaprolacton aus einzelnen Caprolacton-Ringen

Polycaprolacton entsteht durch die Polymerisation des ringförmigen Caprolacton in Anwesenheit von Hitze und einem Katalysator, im Normalfall einem Alkohol oder einem Diol. Es entsteht ein regelmäßiges Polymer, welches zu etwa 50 % in Form von Sphärolithen kristallisiert.

Hergestellt wird Polycaprolacton durch DAW in den USA sowie von den beiden britischen Firmen Perstorp (ehemaliges Solvaygeschäft) und Bostik Findley mit unterschiedlichem molekularem Gewicht.

Einsatz

Polycaprolacton wird aufgrund seiner positiven Eigenschaften für eine Reihe von verschiedenen Anwendungen genutzt. Neben klassischen Anwendungsgebieten für Kunststoffe wie Verpackungen oder Ähnliches kommt es vor allem im medizinischen Bereich zur Anwendung. Dabei verwendet man es für Präparate mit kontrollierter Abgabe von Medikamenten, Klebstoffe und synthetische Wundverbände und orthopädische Abdrücke.[3] In der aktuellen Forschung wird es zudem als Trägermaterial für Stammzellen bei der regenerativen Osteogenese[4] oder Knorpelzellen beim Tissue Engineering[5] erforscht.

Polycaprolactonische Harze sind untereinander mischbar und kompatibel mit vielen anderen Kunststoffen, darunter Polyethylen (PE), Polypropylen (PP), Polystyren (PS), Styrol-Acrylnitril-Copolymer (SAN), Polycarbonat (PC) und Polyethylenterephthalat (PET).

Einzelnachweise

  1. http://www.inaro.de/Deutsch/Pflanzen_index.htm?
  2. Hansjörg Nitz: Thermoplastische Compounds auf Basis des nachwachsenden Rohstoffes Lignin Volltext.
  3. nach Bogdanov 2003
  4. http://www.egms.de/en/meetings/dgu2006/06dgu0200.shtml
  5. http://www.egms.de/pdf/journals/cpo/2006-2/cpo000234.pdf.

Literatur

  • B. Bogdanov: Niedertemperatur-Thermoplaste für den Gebrauch in der Orthopädie, in Orthopädie-Technik 2/03, 2003; PDF-Download

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.