Pasteur-Effekt

Erweiterte Suche

Der Pasteur-Effekt beschreibt eine stark erhöhte Verstoffwechslung von D-Glucose im Zuge der Glykolyse, wenn Sauerstoff nicht mehr zur Verfügung steht.[1][2]

Hintergrund

Der Pasteur-Effekt geht auf ein 1861 von Louis Pasteur entdecktes Phänomen zurück. Er hat beobachtet, dass Hefen unter anaeroben Bedingungen mehr und schneller D-Glucose verbrauchen als unter aeroben Bedingungen.[3] Gleichzeitig wird auch viel mehr Ethanol produziert. Ein analoger Effekt lässt sich bei höheren Eukaryoten finden. Unter anaeroben Bedingungen entsteht im Muskel Lactat, das Anion der Milchsäure. Gleichzeitig wird mehr Glucose in der Glykolyse zu Pyruvat umgesetzt als unter aeroben Bedingungen, bei denen eine Anhäufung des Lactats nicht mehr beobachtet werden kann. Die Entstehung des Ethanols bzw. Lactats sind Folgen der alkoholischen Gärung bzw. der Milchsäuregärung.

1926 bezeichnete Otto Warburg diese Beobachtung als „Pasteursche Reaktion“[4], was später zu „Pasteur-Effekt“ wurde.[2]

Bedeutung

Die Betätigung des Skelettmuskels erfordert Energie. Bei einer intensiven Beanspruchung ist das Angebot an Sauerstoff limitiert, so dass die Energie in Form von ATP ausschließlich durch die Glykolyse bezogen wird. Der letzte Reaktionsschritt, die Bildung von Lactat in der Milchsäuregärung, regeneriert dabei das erforderliche Oxidationsmittel NAD+. Bei der Umsetzung von einem Molekül Glucose entstehen insgesamt zwei Moleküle ATP. Für eine ausreichende Versorgung an Energie werden demnach erhöhte Mengen an Glucose verstoffwechselt.

Steht der Zelle (wieder) Sauerstoff zur Verfügung, so besteht die Möglichkeit, Pyruvat durch den Citratzyklus abzubauen. Dabei wird aufgrund zahlreicher Oxidationsschritte viel NADH erzeugt. Dieses und das von der Glykolyse stammende NADH wird schließlich in der Atmungskette reoxidiert und steht weiteren Runden in der Glykolyse und im Citratzyklus wieder zur Verfügung. Bei diesem aeroben Abbau wird ca. 15 mal mehr Energie erzeugt als beim anaeroben Abbau Glucoses zu Lactat. Infolgedessen sinkt der Verbrauch an Glucose, es wird auch nicht mehr Lactat bzw. Ethanol generiert.

Da für die Deckung des ATP-Bedarfes unter aeroben Bedingungen vergleichsweise viel weniger Glucose metabolisiert werden muss, wird die Glykolyse gehemmt. So führt ein ausreichendes Angebot an Sauerstoff zu einer Inhibition der Phosphofructokinase 1, eines der ersten Schrittmacherenzmye der Glykolyse.

Zellen, die über keine Mitochondrien verfügen (Erythrozyten), zeigen definitionsgemäß keinen Pasteur-Effekt. Tumorgewebe umgehen ihn dadurch, dass aerobe Abbauwege aufgrund einer Fehlregulation ausgeschaltet sind, wodurch ständig Lactat produziert wird (Warburg-Effekt). Diese Fehlregulation bildete in der Vergangenheit Ansätze für eine rationale Tumortherapie (Therapeutische Hyperthermie nach Manfred von Ardenne).

Literatur

  • Ephraim Racker (1974): History of the Pasteur effect and its pathobiology. In: Mol Cell Biochem. 5(1–2); 17–23; PMID 4279327; doi:10.1007/BF01874168

Einzelnachweise

  1. H. Robert Horton, Laurence A. Moran, K. Gray Scrimgeour, Marc D. Perry, J. David Rawn und Carsten Biele (Übersetzer): Biochemie. Pearson Studium; 4. aktualisierte Auflage 2008; ISBN 978-3-8273-7312-0; S. 470f.
  2. 2,0 2,1 Racker, E. (1974): History of the Pasteur effect and its pathobiology. In: Mol Cell Biochem. 5(1–2); 17–23; PMID 4279327; doi:10.1007/BF01874168
  3. David Nelson und Michael Cox: Lehninger Biochemie. Springer, Berlin; 4., vollst. überarb. und erw. Auflage; ISBN 978-3-540-68637-8; S.714f.
  4. Warburg, O. (1926), Biochem. Z. 172; 432–441

Siehe auch

  • Hypoxie (Medizin)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.11.2021
Sonnensysteme | Exoplaneten
Wenig Kollisionsgefahr im Planetensystem TRAPPIST-1
Sieben erdgrosse Planeten umkreisen den Stern TRAPPIST-1 in nahezu perfekter Harmonie.
23.11.2021
Optik
„Maßgeschneidertes“ Licht
Ein Forscherteam entwickelt erstmals ein Lichtfeld, welches die Struktur des vierdimensionalen Raums widerspiegelt.
15.11.2021
Schwarze Löcher
Woher kommt das Gold?
Wie werden chemische Elemente in unserem Universum produziert?
08.11.2021
Teilchenphysik
Neue Einblicke in die Struktur des Neutrons
Sämtliche bekannte Atomkerne und damit fast die gesamte sichtbare Materie bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Bausteine der Natur noch nicht verstanden.
08.11.2021
Physikdidaktik | Strömungsmechanik
Warum Teekannen immer tropfen
Strömungsmechanische Analysen der TU Wien beantworten eine alte Frage: Wie kommt es zum sogenannten „Teapot-Effekt“?
05.11.2021
Teilchenphysik | Thermodynamik
Elektronen-Familie erzeugt bisher unbekannten Aggregatzustand
Ein internationales Forschungsteam des Exzellenzclusters ct.
04.11.2021
Galaxien | Schwarze Löcher
Jet der Riesengalaxie M87
In verschiedenen Wellenlängen lässt sich ein gigantischer Teilchenstrahl beobachten, der von der Riesengalaxie M87 ausgestoßen wird.
04.11.2021
Galaxien
Am weitesten entfernter Nachweis von Fluor in sternbildender Galaxie
Eine neue Entdeckung gibt Aufschluss darüber, wie Fluor – ein Element, das in unseren Knochen und Zähnen als Fluorid vorkommt – im Universum entsteht.
02.11.2021
Monde | Kometen und Asteroiden
Planetologen erforschen schweres Bombardement des Mondes vor 3,9 Milliarden Jahren
Der Mond war vor 3,9 Milliarden Jahren einem schweren Bombardement mit Asteroiden ausgesetzt.
29.11.2021
Optik | Quantenoptik
Nur durch Billiardstel Sekunden getrennt
Ultrakurze Lichtblitze dauern weniger als eine Billiardstel Sekunde und haben eine wachsende technologische Bedeutung.