Optisches Spektrometer

Ein optisches Spektrometer ist ein Spektrometer für sichtbares Licht und daran angrenzende Bereiche des elektromagnetischen Spektrums. Mit ihm können sowohl Emissionsspektren (spektrale Untersuchungen von Lichtquellen) als auch Absorptionsspektren und Aussagen zur frequenzabhängigen Reflexion gewonnen werden.

Aufbau eines Prismen- oder Gitterspektrometers

Spektrometer zur Untersuchung der Reflexion einer Probe im Magnetfeld

Folgender Aufbau ist typisch für ein Gitterspektrometer im VIS- oder NIR-Bereich:

Eine Lichtquelle LQ, je nach Wellenlängenbereich z. B.:

  • Xenon-Hochdrucklampe (Gasentladungslampe, sichtbarer Spektralbereich und angrenzende Bereiche)
  • Halogenglühlampe (sichtbar bis MIR)
  • durchstimmbare Laser (Abbildungsoptik und Monochromator können entfallen)

Ein Abbildungssystem (im Bild zwei Spiegel) bildet die Lichtquelle LQ auf den Monochromatoreintrittsspalt ab. Ein justierbarer Monochromator M dient zum Einstellen der hindurchtretenden Wellenlänge. Er wird z. B. durch einen Schrittmotor angetrieben und liefert auch den Wert der Wellenlänge zur Auswertung.

Mit einem weiteren Abbildungssystem L1, L2 wird die Strahlung vom Monochromatoraustrittsspalt auf die Probe fokussiert.

Die zu untersuchende Probe P ist im Bild beispielsweise ein Reflektor. In anderen Fällen wird eine Probenkammer (Küvette) durchstrahlt oder die Lichtquelle selbst ist das zu untersuchende Objekt.

Mit dem Abbildungssystem L3, L4 wird das Signal auf einen Fotoempfänger P abgebildet. Als Empfänger P (siehe auch Strahlungsdetektor) kommen in Frage:

  • Fotodioden und Halbleiterdetektoren für den sichtbaren und angrenzende Bereiche und – bei entsprechender Kühlung – auch bis in das mittlere Infrarot (MIR)
  • Fotomultiplier für den sichtbaren Bereich und Ultraviolett
  • Bolometer und pyroelektrische Sensoren im mittleren und fernen Infrarot

Ein Registrier- und Analysesystem führt die momentanen Werte von Monochromator-Wellenlänge und Empfängersignal zusammen, stellt sie in einer Messkurve dar und analysiert sie. Heute ist dies meist ein Computer mit entsprechenden Schnittstellen plus Software.

FT-Spektrometer

FT-Spektrometer arbeiten nach dem Prinzip eines Interferometers, bei diesen wird das Signal während der Verstellung des Interferometers computergestützt anhand der Fouriertransformation (FT) hinsichtlich der enthaltenen Frequenzen ausgewertet. Hauptvorteil der FT-Spektrometer ist die geringere Messzeit, da im Gegensatz zu dispersiven Systemen (Prismen- oder Gitterspektrometer) die Probe nicht Schritt für Schritt mit einer sich ändernden Frequenz bestrahlt werden muss. Eingesetzt werden diese Spektrometer vor allem im Infrarotbereich (siehe auch: FTIR-Spektrometer), auf dem Markt sind aber auch FT-Spektrometer für andere spektroskopische Verfahren wie die Raman-Spektroskopie erhältlich.

Varianten

Bei bestimmten Untersuchungen zur Fotoleitung bildet die Probe selbst den Empfänger, so dass eines der Abbildungssysteme und der Fotoempfänger entfallen.

Im MIR und Ultraviolett ab etwa 200 nm müssen die Abbildungen mit Hohlspiegeln (z. B. Aluminium auf Glas) erfolgen, da Glas nicht mehr transparent ist. Spiegel haben überdies den Vorteil einer wellenlängenunabhängigen Abbildungsgeometrie, während Linsen ohne Nachstellung nur für einen jeweils engen Spektralbereich verwendbar sind.

Zwischen Lichtquelle und Monochromator wird oft noch ein Modulator angeordnet, um bei der Auswertung des Empfängersignals das Signal besser vom Umgebungslicht abgrenzen zu können. Der Modulator kann z. B. ein Polarisationsmodulator oder eine einfache Chopperscheibe sein.

Es gibt auch Spektrometer mit einem Polychromator, die das Spektrum nicht sequenziell durchscannen, sondern simultan aufnehmen. Dabei wird das dispergierende bzw. brechende Element erst hinter der Probe angeordnet und das Spektrum von einer Zeilenkamera, also einer linearen Anordnung von Fotodioden, simultan empfangen, so dass die Auswerteelektronik nur noch diese Reihe von Empfängern abfragen und registrieren muss. Siehe auch Diodenarraydetektor.

Echelle-Polychromatoren verwenden Flächendetektoren zur Auswertung des Spektrums.

Anwendungen

Optische Spektrometer werden vorwiegend zur Festkörperspektroskopie eingesetzt:

  • Reflexionsspektren werden aufgenommen, indem ein Spektrum des Reflexionsgrades mit der Probe gemessen wird und anschließend ein Spektrum, bei dem die Probe durch einen Referenzspiegel mit bekanntem Reflexionsspektrum ersetzt ist. Als Referenzspiegelmaterial eignet sich für sichtbares Licht und Infrarot Aluminium (aufgedampft auf Glas), das ohne starke Strukturierung in diesem Wellenlängenbereich einen Reflexionsgrad von nahe 1 erreicht.
  • Transmissions- bzw. Absorptionsspektren werden aufgenommen, indem das zu untersuchende Material am Ort einer Zwischenabbildung in den Strahlengang eingebracht wird. Dieses Spektrum wird dann mit einem Referenzspektrum ganz ohne Probe verglichen.
  • Bei Fotoleitungsspektren wird die Probe als Empfänger benutzt. Als Referenz muss man hier die Probe durch einen Empfänger mit bekanntem Spektralgang ersetzen.

Zumindest die Absorptionsmessungen können per Küvette auch an Flüssigkeiten und im Extremfall an Gasen durchgeführt werden.

Je nach Details der Fragestellungen werden verschiedene optische Modulatoren eingesetzt, um ein Wechsellichtsignal zu erhalten, das gewisse (beispielsweise magnetooptische) Eigenschaften der Probe gezielt anspricht und das als elektrisches Signal nach dem Empfänger besser weiterverarbeitet werden kann (beispielsweise per Lock-in-Verstärker).

Technische Umsetzungen

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.