Optisches Gitter

Erweiterte Suche

Dieser Artikel handelt von Beugung von Licht an Gittern. Zu den Gittern aus Licht zur Manipulation von Atomen siehe Optisches Gitter (Quantenoptik)
Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters.
Großes Reflexionsgitter

Optische Gitter, auch Beugungsgitter oder Mehrfachspalt genannt, sind periodische Strukturen zur Beugung von Licht. Alltagsbeispiele sind CDs und feine Kämme. Die Gitterkonstante ist die Periode des Gitters, typische Werte sind 0,5 µm bis 10 µm. Alle Typen von Gittern bestehen aus parallelen, linienartigen Strukturen:

  • Spalte in undurchsichtigem Material oder undurchsichtige Stege auf einer transparenten Platte (Draht-, Spalt- oder Strichgitter)
  • Stege oder Furchen auf einer reflektierenden Fläche (Reflexionsgitter)

Gitter wirken durch Beugung: Das Licht der einzelnen Spalte interferiert und bildet ein Interferenzmuster. Monochromatisches Licht wird in wenige verschiedene Richtungen (exakt: in Maxima verschiedener Ordnung) abgelenkt. Die Ablenkungswinkel hängen von der Gitterkonstante $ g $ und der Wellenlänge $ \lambda $ ab, größere Ablenkungswinkel entsprechen höheren Ordnungen $ n $. Polychromatisches (z. B. weißes) Licht wird in sein Spektrum aufgefächert ähnlich wie bei einem Prisma. Ganz nahe am Gitter interferiert das Licht zu Kopien der Gitterstruktur (Talbot-Effekt).

Gitter wurden 1785 von David Rittenhouse erfunden, 1821 baute auch Joseph von Fraunhofer Gitter.

Anwendung

Optische Gitter werden in optischen Messeinrichtungen zur Monochromatisierung der Strahlung (Monochromator) sowie zur Analyse von Spektren (optisches Spektrometer) eingesetzt. Ebenso werden damit Laser frequenzstabilisiert (siehe Braggreflektor, DFB-Laser), kurze Laser-Impulse hoher Leistung verstärkt und in Lasershows Punktmuster erzeugt. Ein weiteres Anwendungsgebiet ist die Kanaltrennung bzw. -zusammenführung in der optischen Datenübertragung.

Gittertypen

Einteilung von Gittern mit Beispielen.

Unterscheidungsmerkmale für Gittertypen sind:

  • Herstellungsverfahren: Man unterscheidet zwischen mechanisch hergestellten (z. B. mit Diamantsticheln geteilten) und holografischen (=optisch erzeugten) Gittern. Eine seltener verwendete Methode besteht in der Abbildung von Masken in einen Fotolack.
  • Funktionsweise: Es wird zwischen Transmissions- und Reflexionsgittern unterschieden.
  • Transparenz: Es wird zwischen Amplitudengittern (absorbierenden Gittern) und Phasengittern (Umformen der Wellenfront) unterschieden

Eine neuere Entwicklung sind abbildende Gitter, die sowohl holografisch als auch – in Grenzen – durch mechanische Teilung hergestellt werden können.

Ein Spezialfall sind Röntgengitter, bei denen die (Röntgen-) Beugung an den periodischen Gitterstrukturen eines Kristalls geschieht. Weil hier die Gitterkonstanten von der Größenordnung eines Atomdurchmessers sind, eignen diese sich für sehr kurze Wellenlängen.

Transmissionsgitter

Transmissionsgitter sind Amplitudengitter. Sie bestehen aus einer Abfolge von durchlässigen und undurchlässigen Bereichen (Lücken und Stege). Sie besitzen deshalb den inhärenten Nachteil, dass durch die Stege ein Teil des einfallenden Lichts reflektiert oder absorbiert wird und damit nicht zur Intensität des entstehenden Spektrums beiträgt. Bei einem Steg-Lücke-Verhältnis von 1:1 sind das 50 %.

Drahtgitter

1820 benutzte Joseph von Fraunhofer Drähte, die er dicht nebeneinander spannte. Ebenso wirken feine Gewebe (z. B. Regenschirm als Beispiel eines 2D-Gitters).

Ein Drahtgitter ist auch das oben abgebildete Röntgenbeugungsgitter.

Drahtgitter können auch bei Mikrowellen, Millimeterwellen, Terahertzstrahlung und im mittleren/fernen Infrarot zum Einsatz kommen, sie besitzen dann entsprechend große Gitterkonstanten.

Laminargitter

Laminargitter werden dort verwendet, wo es Substratmaterialien gibt, die für den Bereich der Anwendungswellenlängen transparent sind. Sie bestehen dementsprechend aus Streifen aus Metall oder absorbierendem Material, die auf das Substrat aufgebracht bzw. auf diesem erzeugt werden. Die Gitterstrukturen können auf dem Wege der Holografie, d. h. durch Interferenz zweier kohärenter Laserstrahlen, direkt auf einem mit Fotolack beschichteten Glas- oder Kunststoffsubstrat erzeugt werden. Man kann mit dieser Technik Furchendichten bis zu mehreren 1000 Linien pro Millimeter erzeugen.

Reflexionsgitter

Reflexionsgitter sind Phasengitter. Sie funktionieren so, dass für bestimmte Winkel und Wellenlängen Elementarwellen in benachbarten Bereichen (z. B. Steg und Lücke eines Kastenprofils) einen Gangunterschied von einem ganzzahlig Vielfachen der Wellenlänge haben, was zu konstruktiver Interferenz führt. Reflexionsgitter sind im Allgemeinen effizienter als Transmissionsgitter, weil im Idealfall die gesamte Strahlungsleistung – abzüglich des Reflexionsverlusts und eventueller Abschattungsverluste – zur gebeugten Leistung beiträgt.

Mechanisch geteilte Blazegitter

In Monochromatoren und Spektrometern werden häufig so genannte Sägezahn- oder Blazegitter eingesetzt. Dies sind Gitter mit einem Sägezahn-ähnlichen Profil, wobei die an der konstruktiven Interferenz beteiligten Blazeflächen dem langen Schenkel des Sägezahns entsprechen. Der Winkel zwischen Blazefläche und Substrat (der Blazewinkel) kann so gewählt werden, dass möglichst viel Licht einer bestimmten Wellenlänge in eine bestimmte Beugungsordnung fällt. Dies ist dann erreicht, wenn für ein- und ausfallende Strahlung gleichzeitig auch die Reflexionsbedingung bezüglich der Blazefläche gilt. Im Idealfall kann so eine Beugungseffizienz 100 % erreicht werden.

Bei der mechanischen Teilung können die Blazewinkel in weiten Bereichen variiert werden, weshalb man die Technik trotz ihrer Nachteile gerne zur Herstellung von Blazegittern verwendet. Bei der mechanischen Teilung werden mit einem geeignet geschliffenen Diamantstichel in einer Metalloberfläche parallele Furchen erzeugt. Dabei wird das zu teilende Material (häufig Gold) plastisch verformt. Bei korrekter Einstellung der Stichelwinkel und geeignetem Diamantschliff erreicht man, dass ein Aufwurf mit sauberem Sägezahnprofil entsteht. Der Physiker Henry Augustus Rowland verbesserte 1882 die Herstellung mechanisch geteilter Gitter entscheidend, indem er die Präzision des Verfahrens erheblich verbesserte; man spricht daher auch von Rowland-Gitter. Außerdem gelang ihm als erstem die Teilung auf konkaven Substraten.

Holografische Gitter

Reflexionsgitter können auch fotolithografisch bzw. holografisch hergestellt werden. Dazu werden zwei kohärente Teilstrahlen eines Lasers im Photolack eines Substrats zur Interferenz gebracht. Das Interferenzmuster erzeugt Bereiche mit starker und schwächerer Belichtung. Bei der anschließenden Entwicklung wird (je nach Art des Entwicklers) einer der beiden Bereiche bevorzugt abgetragen. Es ist unmittelbar einsichtig, dass auf diese Weise Laminarprofile erzeugt werden können. Es ist aber in engeren Grenzen auch möglich, Blazeprofile holografisch herzustellen.

Ein wichtiger Vorteil des fotolithografischen Verfahrens besteht darin, dass Gitter auch auf stark gekrümmten Substratoberflächen hergestellt werden können. Ein weiterer Vorteil mag darin liegen, dass potenziell eine größere Anzahl von Originalen in vergleichsweise kurzer Zeit angefertigt werden kann, wenn der Aufbau erst einmal steht und der Laser stabil arbeitet.

Abbildende Gitter

Die Kombination eines Gitters mit einer konkaven Oberfläche, die also einen Hohlspiegel bildet, hat den Vorteil, dass dadurch die gebeugte Strahlung gleich fokussiert wird, ohne dass weitere optische Elemente nötig sind. Allerdings ist diese Fokussierung noch mit den typischen Abbildungsfehlern eines Hohlspiegels behaftet. Man kann jedoch das Gitterdesign so modifizieren, dass es diese Fehler korrigiert.

Ein weitergehendes Beispiel sind die sogenannten flat-field-Gitter. In dem oben beschriebenen Fall liegen die Fokusse der verschiedenen Wellenlängen nicht auf einer Ebene sondern auf einer gekrümmten Fläche. Moderne Detektor-Arrays, wie sie gerne in Kompaktspektrometern eingesetzt werden, sind jedoch üblicherweise eben. Deshalb werden die Parameter des Holografieaufbaus so korrigiert, dass die Fokusse aller Wellenlängen eines interessierenden Bereichs in einer Ebene liegen. Bei derartigen Gittern sind die beugenden Strukturen weder gerade noch parallel noch gleichabständig. Es handelt sich bereits um relativ komplexe Hologramme.

Auch mechanisch geteilten Gittern kann eine abbildende Wirkung mitgegeben werden. Bei sogenannten Chirp-Gittern wird die Gitterkonstante nach Vorgabe über die Gitterfläche variiert. Dadurch kann z. B. eine Fokussierung in der Ebene senkrecht zu den Gitterfurchen erzielt werden.

Replika

Zur Produktion größerer Stückzahlen wird auf Replikatechniken zurückgegriffen.

Eine Replika hat interessanterweise eine bessere Qualität (Streulicht und höhere Ordnungen vermindert) als das Original. Bei der Fertigung mit einem Diamantstichel sind die erzeugten Furchen sehr präzise in ihrer Form, aber die Kanten zu den Nachbarfurchen haben einen leichten unvermeidlichen Grat. Durch den Abdruck wird das Problem beseitigt. Jetzt liegen die Kopien der störenden Grate in der „Talsohle“ und die präzisen Furchen bilden die Spitzen des Gitters. Die Abdrücke werden auf eine Glasplatte gekittet und für Reflexionsgitter noch mit Metall bedampft. Die Gitterqualität ist so gut, dass sie nur von holografisch erzeugten Gittern übertroffen wird. Die Fertigung gleicht derjenigen einer CD-ROM, spielt sich allerdings wegen der erheblich kleineren Stückzahlen auf Manufakturniveau ab. Durch die Replikationstechnik ist man nicht auf den mechanischen Teilungsprozess bzw. die holografische Fertigung angewiesen, die beide einen erheblichen Zeit- und Kostenaufwand erfordern und mit hohen Ausfallrisiken behaftet sind.

Funktion

Beugung am Transmissionsgitter, g = Gitterkonstante, φ = Ablenkwinkel, d = Gangunterschied
Die Intensitätsverteilung für rotes sowie blaues Licht für N = 2 bis N = 30 als Funktion des Winkels dargestellt. Die Funktion wurde mit 1/N² skaliert.

Gittergleichung

Gitter erzeugen bei Bestrahlung mit Licht einer bestimmten Wellenlänge eine Serie von Linien konstruktiver Interferenz. Bei Transmissionsgittern liegen diese beiderseits der Richtung des einfallenden Strahls („nullte Ordnung“). Die Winkel dieser Richtungen ergeben sich bei senkrechtem Einfall aus der Beziehung für den Gangunterschied $ d\, $:

$ d=n\cdot \lambda =g\cdot \sin(\varphi ),\quad n\in \mathbb {Z} $       (Hauptmaxima bei senkrechtem Einfall)}

mit:

$ \lambda $ = Wellenlänge,
$ g\, $ = Gitterkonstante,
$ \varphi $ = Ablenkwinkel,
$ n\, $ = Ordnung des Hauptmaximums (je höher die Ordnung, desto geringer die Intensität)

Licht, das auf ein Beugungsgitter auftrifft, wird vergleichbar zum Doppelspaltexperiment gebeugt, die so entstehenden Elementarwellen interferieren und bilden so ein Gitterspektrum.

Für die Hauptmaxima gilt:

$ \lambda ={\frac {g\cdot \sin \varphi _{n}}{n}} $

Bei $ N $ an der Beugung beteiligten Gitterelementen ergeben sich zwischen zwei Hauptmaxima jeweils $ N-1 $ Minima bzw. Dunkelrichtungen. Deshalb werden die Hauptmaxima mit zunehmendem $ N $ schärfer; die Nebenmaxima werden zwar zahlreicher, aber schwächer. Somit steigt das Auflösungsvermögen.

Selbst bei nicht senkrechtem Einfall im Winkel $ \varphi _{i} $ entspricht die nullte Ordnung weiterhin dem Verhalten einer Glasscheibe (Transmissionsgitter) bzw. eines Spiegels (Reflexionsgitter), dieses Licht bleibt also unverändert und reduziert die Wirkung des Gitters (Abhilfe durch Blazegitter). Genauer beträgt der Gangunterschied

$ d=g\cdot (\sin(\varphi )+\sin(\varphi _{i})) $

Intensitätsberechnung mit Fourier-Optik

Im Folgenden wird davon ausgegangen, dass das Gitter mit monochromatischem Licht bestrahlt wird. Um die genaue Intensitätverteilung im Fernfeld des Gitters zu berechnen, nutzt man die Methoden der Fourieroptik. Die Blendenfunktion des Gitters setzt sich wie folgt zusammen:

  • Ein einzelner Spalt mit Breite b lässt sich mit der Rechteckfunktion $ \operatorname {rect} _{b}(x) $ beschreiben.
  • Um zunächst unendlich viele Spalte mit gleichem Abstand d zu erhalten, faltet man den Einzelspalt mit einem Dirac-Kamm $ \Delta _{d}(x)=\sum _{-\infty }^{\infty }\delta (x-nd) $.
  • Die räumliche Begrenzung des Gitters wird durch die Multiplikation des gefalteten Dirac-Kamms mit einer Rechtecksfunktion $ \operatorname {rect} _{B}(x) $ im x-Raum beschrieben. B ist dabei die Gesamtbreite des Gitters.

Die vollständige Blendenfunktion ist also:

$ A(x)=\operatorname {rect} _{B}(x)\cdot \left(\operatorname {rect} _{b}(x)*\left(\Delta _{d}(x)\right)\right) $

Mit dem Kirchhoffschen Beugunsintegral lässt sich zeigen, dass das Beugungsmuster der Fouriertransformierten der Autokorrelation der Blendenfunktion entspricht.

Nach dem Baukastenprinzip und dem Faltungstheorem lässt sich die Fouriertransformierte der Blendenfunktion aus den Fouriertransformierten deren einzelner Komponenten zusammensetzen.

$ {\mathcal {F}}[\operatorname {rect} _{b}(x)](k)=b\cdot \operatorname {sinc} \left({\frac {b}{2}}k\right)=2{\frac {\sin \left({\frac {b}{2}}k\right)}{k}} $

$ {\mathcal {F}}[\Delta _{d}(x))](k)={\frac {1}{d}}\Delta _{1/d}(k) $

Die Fouriertransformierte des Delta-Kamms macht deutlich, dass ein kleinerer Abstand der Gitterspalte im x-Raum zu einem größeren Abstand der Minima und Maxima im k-Raum führt -- und umgekehrt.

Damit ergibt sich für die Intensitätsverteilung, als Quadrat der Amplitudenverteilung:

$ I(k)=I_{0}\cdot \left(\operatorname {sinc} \left({\frac {B}{2}}k\right)*\left(\operatorname {sinc} \left({\frac {b}{2}}k\right)\cdot {\frac {1}{d}}\Delta _{1/d}(k)\right)\right)^{2} $

In vielen Fällen kann die endliche Breite des Gitters, die die Faltung im k-Raum bewirkt, vernachlässigt werden. Diese Methode ist jedoch derjenigen vorzuziehen, die die Begrenzung des Gitters mit einer endlichen Summe statt des unendlich langen Deltakamms beschreibt.

Auflösungsvermögen

Das Auflösungsvermögen eines Gitters ergibt sich nach dem Rayleigh-Kriterium somit zu

$ {\frac {\lambda }{\Delta \lambda }}=nN $

wobei $ n $ die Ordnung des Maximums und $ N $ die Anzahl ausgeleuchteter Linien ist.

Herstellerspezifikationen

Hersteller geben für angebotene Gitter immer die mechanischen Abmessungen an, wodurch der nutzbare Strahldurchmesser festgelegt wird, sowie die Gitterkonstante, die allerdings typischerweise in „Linien/Millimeter“ angegeben wird. Bei Blaze-Gittern wird der Winkel angegeben sowie diejenige Wellenlänge, für die das Gitter durch Gitterkonstante und Blaze-Winkel optimiert ist. Bei holographischen Gittern wird dagegen immer ein ganzer Wellenlängenbereich angegeben, für den das Gitter ausgelegt ist.

Alltagsbeispiel

CDs weisen Spurabstände um 1,6 µm auf, so dass sie sich direkt als Gitter für den sichtbaren Teil des elektromagnetischen Spektrums (Wellenlängen 400–700 nm) eignen. Entsprechend sieht man ein deutlich aufgefächertes Farbspektrum, wenn man weißes Licht von einer CD reflektieren lässt. DVDs haben praktisch die gleiche Wirkung wie CDs.

Weblinks

 Commons: Optische Gitter – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.