Gitterebene

Gitterebene

(Weitergeleitet von Netzebenenabstand)

Als Gitter- oder Netzebene bezeichnet man in der Kristallographie eine Ebene, die durch Punkte des Kristallgitters aufgespannt wird. Ihre Lage im Raum wird durch die Millerschen Indizes (hkl) beschrieben.

Beschreibung

Ein Kristallgitter lässt sich als ganzzahlige Linearkombination der Basisvektoren a1, a2 und a3 (Richtung der Kristallachsen) beschreiben. Eine Gitterebene ist durch ihre Schnittpunkte mit den Kristallachsen festgelegt. Die Millerschen Indizes (hkl) bezeichnen die Ebene, die durch die drei Punkte 1ha1, 1ka2 und 1la3 geht. Also schneiden die Kristallachsen des jeweiligen Kristallsystems die Ebenen gerade an den Kehrwerten der einzelnen Indizes. Ein Index von Null bezeichnet dabei einen Schnittpunkt im Unendlichen, das heißt, der zugehörige Basisvektor ist parallel zur Ebene.

Der reziproke Gittervektor G=hg1+kg2+lg3 steht senkrecht auf der durch die Millerschen Indizes (hkl) definierten Gitterebene. Die Vektoren g1, g2 und g3 bilden die Basisvektoren des reziproken Gitters.

Eine Gitterebenenschar besteht aus allen parallel verlaufenden Gitterebenen mit jeweils dem Gitterebenenabstand dhkl. Dieser kann aus den Millerschen Indizes und den reziproken Gittervektoren berechnet werden:

dhkl=2π|hg1+kg2+lg3|

Für Kristallsysteme mit rechtwinkligen Achsen, also orthorhombische und höher symmetrische Gitter (tetragonale und kubische Systeme) gilt folgende Formel (a, b, c seien die Gitterkonstanten):

dhkl=1(ha)2+(kb)2+(lc)2

Diese vereinfacht sich beispielsweise für kubische Systeme durch Gleichsetzen von a=b=c weiter:

dhkl=ah2+k2+l2

Herleitungen

Eine Ebene ist eindeutig durch drei nicht auf einer Gerade liegende Punkte definiert. Dies sind hier die Schnittpunkte mit den Kristallachsen: P1=1ha1, P2=1ka2 und P3=1la3.

Die Punkte auf der Ebene lassen sich durch die Parameterform r=r0+λu+μv beschreiben (mit Aufpunkt und zwei Richtungsvektoren, die in der Ebene liegen und nicht kollinear sind). Liegen zwei Punkte in der Ebene, so liegt deren Verbindungsvektor ebenfalls in der Ebene. Hierüber lassen sich die Richtungsvektoren konstruieren (u=P1P2 und v=P2P3). Als Aufpunkt wähle irgendeinen in der Ebene liegenden Punkt (hier P1):

r=1ha1+λ(1ha11ka2)+μ(1ka21la3)

Bildet man das Skalarprodukt zwischen dem reziproken Gittervektor G=hg1+kg2+lg3 und r unter Ausnutzung der Relation giaj=2πδij, so ergibt sich:

Gr=1hGa12πh=2π+λ(1hGa12πh1kGa22πk)=0+μ(1kGa22πk1lGa32πl)=0=2π

Für einen Normalenvektor der Ebene n sind die Skalarprodukte mit den Richtungsvektoren gleich Null (nu=0 und nv=0). Genau das trifft auf G=hg1+kg2+lg3 zu, dieser steht also auf der Ebene (hkl) senkrecht.

Durch den Gitterpunkt am Koordinatenursprung verläuft parallel zur gerade betrachteten Ebene durch P1 auch eine Ebene mit den Indizes (hkl). Deren Abstand ist die Projektion eines Verbindungsvektors beider Ebenen (r0=r) auf den normierten Normalenvektor (G/G). Dies ergibt zusammen mit obiger Rechnung den Gitterebenenabstand:

GGr=2π|hg1+kg2+lg3|dhkl

Im Nenner treten bei der Betragsbildung sowohl die Längen der reziproken Gittervektoren auf (gi2=|gi|2) als auch die Projektionen der Gittervektoren aufeinander (gigj mit ij). Letztere sind bei nicht-orthogonalen Kristallsystemen ungleich Null:

dhkl=2π|hg1+kg2+lg3|=2πh2g12+k2g22+l2g32+2hkg1g2+2hlg1g3+2klg2g3

Ein orthorhombisches Kristallsystem ist ein rechtwinkliges Kristallsystem mit drei 90°-Winkeln, jedoch ohne gleich lange Achsen. Die Gittervektoren lauten hier ausgedrückt bzgl. der kanonischen Einheitsbasis:

a1=ae^x
a2=be^y
a3=ce^z

Und die dazugehörigen reziproken Gittervektoren sind ebenfalls orthogonal (gigj=0 für ij):

g1=2πae^x
g2=2πbe^y
g3=2πce^z

Setze diese in obige allgemeine Formel für den Gitterebenenabstand ein:

dhkl=2π|h2πae^x+k2πbe^y+l2πce^z|=1(ha)2+(kb)2+(lc)2

Das kubische Kristallsystem ist ebenfalls rechtwinklig, aber zusätzlich sind die Gitterkonstanten bezüglich jeder Kristallachse gleich a=b=c und die Formel vereinfacht sich weiter zu:

dhkl=ah2+k2+l2

Siehe auch

  • Raumgitter