Henry (Einheit)

Erweiterte Suche

Einheit
Norm SI-Einheit
Einheitenname Henry
Einheitenzeichen $ \mathrm {H} $
Beschriebene Größe(n) Selbstinduktivität; Gegeninduktivität
Größensymbol(e) $ L;\,M $
Dimensionssymbol $ {\mathsf {ML^{2}T^{-2}I^{-2}}} $
In SI-Einheiten $ \mathrm {1\,H=1\,{\frac {kg\,m^{2}}{A^{2}\,s^{2}}}=1\,{\frac {Wb}{A}}} $
In elektrostatischen
CGS-Einheiten (CGS-ESU)
$ \mathrm {1\,H\approx {\frac {1}{9}}\cdot 10^{-11}\,{\frac {s^{2}}{cm}}} $
In elektromagnetischen
CGS-Einheiten (CGS-EMU)
$ \mathrm {1\,H=10^{9}\,cm} $
Benannt nach Joseph Henry

Henry ist die SI-Einheit der Induktivität. Die Einheit ist benannt nach Joseph Henry. Sie ist für jede Leiterspule spezifisch und wird meistens auf ihr angegeben.

Das Symbol L für Induktivität wurde zu Ehren von Emil Lenz gewählt, dessen theoretische Arbeiten zur elektromagnetischen Induktion grundlegend waren.[1]

$ 1\,\mathrm {H} =1\,\mathrm {\frac {V\,s}{A}} =1\,\Omega \,\mathrm {s} $

Eine Spule hat eine Induktivität von 1 Henry, wenn bei gleichförmiger Stromänderung von 1 Ampere in 1 Sekunde eine Selbstinduktionsspannung von 1 Volt entsteht.

Wird die Stromstärke in einer lang gestreckten (schlanken) Leiterspule geändert, entsteht eine Selbstinduktionsspannung Uind, welche ihrer Ursache, der Stromstärkeänderung, entgegenwirkt. Dieser Sonderfall des Energieerhaltungssatzes wird durch die Lenz’sche Regel definiert. Die auf diese Weise induzierte Spannung ist gleich dem negativen Produkt aus der Induktivität der Spule und der Stromstärkenänderung.

Herleitung der Induktivität mithilfe der Selbstinduktionsspannung durch Stromstärkeänderung:

$ U_{\mathrm {ind} }(t)=-n{\dot {\Phi }}(t) $

wobei der magnetische Fluss

$ \Phi =BA={\mu _{0}\mu _{r}nAI \over l} $

hier zeitlich abgeleitet und mit der Windungszahl n der schlanken Spule multipliziert wird. Das negative Vorzeichen ergibt sich aus der bereits erwähnten Lenz’schen Regel, da die Induktion immer der Ursache entgegen wirkt. Ein positives Vorzeichen würde gegen den Energieerhaltungssatz sprechen, da sonst die Energie aus dem Nichts entstehen würde.

Diese Formel lässt sich auf die Form

$ U_{\mathrm {ind} }=-{\mu _{0}\mu _{r}n^{2}A \over l}{\dot {I}}(t) $

bringen. Nun wird der Bruch zur Konstanten L definiert:

$ U_{\mathrm {ind} }=-L{\dot {I}}(t) $

Also ist die Induktivität

$ L={\mu _{0}\mu _{r}n^{2}A \over l} $

CGS-Einheitensystem

Das Abhenry (abH) ist die veraltete Maßeinheit für Induktivität aus dem elektromagnetischen CGS-Einheitensystem. Es gilt

1 abH = 10-9 H = 1 nH (Nanohenry)

In einer Induktivität von 1 abH erzeugt ein um 1 Abampere pro Sekunde ansteigender Strom eine Spannung von 1 Abvolt.

Das Stathenry (statH) ist die veraltete Maßeinheit für Induktivität aus dem elektrostatischen CGS-Einheitensystem. Es gilt

1 statH = c2 × 10-5 H ~ 8,99 × 1011 H = 899 GH (Gigahenry)

In einer Induktivität von 1 statH erzeugt ein um 1 Statampere pro Sekunde ansteigender Strom eine Spannung von 1 Statvolt.

Vor der Einführung des SI hat man das heutige SI-Henry als absolutes Henry bezeichnet, das von der damaligen Definition des (internationalen) Ohm abgeleitete Henry dagegen als internationales Henry. Da die nationalen Standardbehörden aufgrund der Messvorschriften der Definitionen unterschiedliche Umrechnungsfaktoren ermittelt haben, hat es national unterschiedliche Zahlenwerte für das internationale Henry gegeben. Das Internationale Komitee für Maß und Gewicht hat 1946 das mittlere internationale Ohm mit 1,00049 Ω festgestellt, womit auch gilt:

1 mittleres internationales Henry = 1 Hint = 1,00049 H

Bedeutend war auch das US-amerikanische internationale Henry:

1 US-amerikanisches internationales Henry = 1,000495 H[2]

Siehe auch

Quellen

  1. Glenn Elert (1998–2008): The Physics Hypertextbook: Inductance. Abgerufen am 11. November 2011.
  2. Electrical Engineers Handbook Electric Power, Harold Pender, William A. Del Mar, 1949, Seite 1-39

Die cosmos-indirekt.de:News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.