Gebundener Zustand
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Seiten mit defekten Dateilinks
- Zusammengesetztes Teilchen
- Quantenmechanik
- Quantenfeldtheorie
Ein gebundener Zustand oder ein Bindungszustand ist in der Physik ein Verbund aus zwei oder mehr Körpern oder Teilchen, die sich wie ein einziges Objekt verhalten. Die Abgrenzung kann gegenüber dem Zustand gelten, in dem ein einzelnes Teilchen (elementar oder zusammengesetzt) von den anderen entfernt (frei) ist, oder auch gegenüber dem Fall, dass sämtliche Teile des Ganzen voneinander entfernt sind (dispers).
In der Quantenmechanik ist (sofern die Teilchenzahl erhalten bleibt) der gebundene Zustand ein Zustand im Hilbertraum, der zu zwei oder mehr Teilchen korrespondiert, dessen Wechselwirkungsenergie negativ ist. Daher können die Teilchen nicht getrennt werden, solange keine Energie aufgewendet wird. Diese zum Lösen der Bindung nötige Energie heißt Bindungsenergie. Die Energieniveaus des gebundenen Zustands sind, im Gegensatz zum kontinuierlichen Spektrum von einzelnen Teilchen, diskret. Es gibt auch instabile gebundene Zustände mit positiver Wechselwirkungsenergie. Das ist möglich, wenn eine "Energiebarriere" vorhanden ist, die für den Zerfall durchtunnelt werden muss. Dies ist der Fall für einige Radionuklide in ihrem Grundzustand und allgemein für viele angeregte Zustände von Atomkernen.
Im Allgemeinen kann ein stabiler gebundener Zustand in einem Potenzial existieren, wenn es eine stehende Wellenfunktion gibt. Die Energien dieser Wellenfunktionen sind negativ.
In relativistischen Quantenfeldtheorien zeigt sich ein gebundener Zustand mit n Teilchen der Massen m1, ..., mn als ein Pol in der S-Matrix mit einer Ruhemasse die kleiner als m1+...+mn ist. Ein instabiler gebundener Zustand (siehe Resonanz) stellt sich als Pol mit komplexer Schwerpunktmasse dar.
Beispiele
- Ein Proton und ein Elektron können sich unabhängig voneinander bewegen; als Gesamtsystem haben sie dann positive Energie. Bilden sie jedoch unter dem Einfluss der Coulombkraft einen gebundenen Zustand, das Wasserstoffatom, wird die Energie negativ. Dabei ist nur der Zustand mit der kleinsten (also negativsten) Energie, der Grundzustand, stabil. Alle anderen, angeregten, Zustände sind instabil und zerfallen in den Grundzustand. Dabei werden Photonen emittiert.
- Ein Atomkern ist ein gebundener Zustand von Protonen und Neutronen.
- Ein Positronium-Atom ist ein instabiler gebundener Zustand eines Elektrons und eines Positrons. Es zerfällt in (meist) zwei Photonen.
- Das Proton ist ein Bindungszustand von drei Quarks (zwei up und ein down); jeweils ein Quark hat die quantenchromodynamische Farbe rot, grün und blau. Anders als beim Wasserstoff können die einzelnen Quarks nie getrennt werden (Siehe Confinement).
Mathematische Struktur in der Quantenmechanik
Sei $ H $ ein komplex separabler Hilbertraum, $ U=\lbrace U(t)\mid t\in \mathbb {R} \rbrace $ sei eine ein-parametrige Gruppe mit unitären Operatoren auf $ H $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho = \rho(t_0) ein statistischer Operator auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H . Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A eine Observable auf a Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu(A,\rho) die induzierte Wahrscheinlichkeitsverteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A in Bezug auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho auf der Borel $ \sigma $-Algebra auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb{R} . Die Entwicklung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho induziert durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U wird gebunden in Bezug auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A genannt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lim_{R \rightarrow \infty} \sum_{t \geq t_0} \mu(A,\rho(t))(\mathbb{R}_{> R}) = 0 , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb{R}_{>R} = \lbrace x \in \mathbb{R} \mid x > R \rbrace .
Beispiel: Sei $ H=L^{2}(\mathbb {R} ) $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A die Orts-Observable. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho = \rho(0) \in H mit einem kompaktem Träger und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [-1,1] \subseteq \mathrm{Supp}(\rho) .
- Wenn die Zustandsentwicklung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho "das Wellenpaket konstant nach rechts bewegt", z.B. wenn $ [t-1,t+1]\in \mathrm {Supp} (\rho (t)) $ für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t \geq 0 , dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho in Bezug auf den Ort kein gebundener Zustand.
- Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho sich mit der Zeit nicht ändert, z.B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho(t) = \rho für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t \geq 0 , dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho in Bezug auf den Ort ein gebundener Zustand.
- Allgemeiner: Wenn die Zeitentwicklung von $ \rho $ "Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho nur innerhalb eines begrenzten Bereiches bewegt", dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho ein gebundener Zustand bezogen auf den Ort.