Die Bezeichnung Excimer, leitet sich her aus der Kurzform von „excited dimer“ (‚angeregtes Dimer‘). Es handelt sich dabei um ein kurzlebiges Teilchen, das aus zwei oder mehreren zusammenhängenden Atomen oder Molekülen besteht. Die Besonderheit besteht darin, dass das Excimer nur gebildet werden kann, wenn ein Bindungspartner sich in einem angeregten Zustand befindet. Verliert dieses Teilchen Energie, trennen sich die Bindungspartner und kehren in den Grundzustand zurück. Dabei wird häufig Licht emittiert. Die Emissionsbande ist breit und stärker rot-verschoben, als die Emissionsbande des angeregten Monomers. Diese Eigenschaft kann spektroskopisch zur Identifizierung von Excimeren eingesetzt werden.

Definitionsgemäß bestehen die Atome eines Excimer-Moleküls aus zwei oder mehreren Atomen des gleichen chemischen Elements. Handelt es sich um Atome verschiedener Elemente, spricht man von einem Exciplex. In der Literatur wird diesem Umstand jedoch selten Rechnung getragen und somit werden Exciplexe häufig fälschlich als Excimere bezeichnet.

In der Lasertechnologie werden die Eigenschaften von Excimeren (bzw. heute meist Exciplexen) durch Excimerlaser für konkrete Anwendungsfälle genutzt. Die für die Lasertechnik notwendige Besetzungsinversion ist bereits durch die Molekülbildung gegeben, da hierbei der Grundzustand nicht besetzt sein darf. Die Zerfallszeit beträgt i.A. wenige Nanosekunden (ns). Praktische Bedeutung haben Excimerlaser erlangt, die im ultravioletten Spektralbereich emittieren. Das laseraktive Medium besteht hierbei überwiegend aus Fluor (F2) 157 nm, Argonfluorid (ArF) 193 nm, Kryptonfluorid (KrF) 248 nm, Xenonchlorid (XeCl) 308 nm oder Xenonfluorid (XeF) 351 nm. Sie finden Einsatz in der Medizintechnik und in der Fotolithografie, einem Bereich der Halbleiterherstellung.

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?