Dirac-Matrizen

Erweiterte Suche

Die Dirac-Matrizen (nach dem britischen Physiker Paul Dirac), auch Gamma-Matrizen genannt, sind vier Matrizen, die der Dirac-Algebra genügen. Sie treten in der Dirac-Gleichung auf.

Definition

Die Dirac-Matrizen $ \gamma ^{0},\,\gamma ^{1}\,,\gamma ^{2}\, $ und $ \,\gamma ^{3}\, $ erfüllen definitionsgemäß die Dirac-Algebra, das heißt, die algebraischen Bedingungen

$ {\begin{aligned}\gamma ^{0}\gamma ^{0}&=1\,,&\gamma ^{1}\gamma ^{1}&=-1\,,&\gamma ^{2}\gamma ^{2}&=-1\,,&\gamma ^{3}\gamma ^{3}&=-1\,,\\\gamma ^{0}\gamma ^{1}&=-\gamma ^{1}\gamma ^{0}\,,&\gamma ^{0}\gamma ^{2}&=-\gamma ^{2}\gamma ^{0}\,,&\gamma ^{0}\gamma ^{3}&=-\gamma ^{3}\gamma ^{0}\,,&&\\\gamma ^{1}\gamma ^{2}&=-\gamma ^{2}\gamma ^{1}\,,&\gamma ^{1}\gamma ^{3}&=-\gamma ^{3}\gamma ^{1}\,,&\gamma ^{2}\gamma ^{3}&=-\gamma ^{3}\gamma ^{2}\,.&&\end{aligned}} $

Diese Bedingungen betreffen Antikommutatoren, also die Summe der Produkte zweier Matrizen in beiden Reihenfolgen,

$ \{A,B\}=A\,B+B\,A\,. $

In Indexnotation, in der $ \mu $ und $ \nu $ für Zahlen aus $ \{0,1,2,3\} $ stehen, schreiben sich die Bedingungen an die Dirac-Matrizen zusammenfassend als

$ \{\gamma ^{\mu },\gamma ^{\nu }\}=\gamma ^{\mu }\gamma ^{\nu }+\gamma ^{\nu }\gamma ^{\mu }=2\,\eta ^{\mu \nu }I_{4}\,. $

Dabei sind $ \eta ^{\mu \nu } $ die Komponenten der Minkowski-Metrik mit Signatur (1,−1,−1,−1) und $ I_{4} $ ist die 4x4 Einheitsmatrix.

Die γ5-Matrix

Zusätzlich zu den vier Gamma-Matrizen definiert man noch die Matrix

$ \gamma ^{5}=\mathrm {i} \,\gamma ^{0}\gamma ^{1}\gamma ^{2}\gamma ^{3}\ . $

Sie ist ihr eigenes Inverses, $ \gamma ^{5}\gamma ^{5}=1\,, $ ist hermitesch, antivertauscht mit den Gamma-Matrizen, $ \gamma ^{5}\gamma ^{\mu }=-\gamma ^{\mu }\gamma ^{5}\,, $ und demnach mit jedem Produkt von Gamma-Matrizen mit einer ungeraden Anzahl von Faktoren.

Eigenschaften

Die Gamma-Matrizen erzeugen eine Clifford-Algebra. Jede irreduzible Darstellung dieser Algebra durch Matrizen besteht aus $ 4\times 4 $-Matrizen. Die Elemente des Vektorraumes, auf den sie wirken, heißen Spinoren. Verschiedene Darstellungen der Dirac-Algebra sind einander äquivalent, das heißt, sie unterscheiden sich nur durch die gewählte Basis. Insbesondere sind die negativen transponierten Matrizen $ -\gamma ^{\mu \,{\text{T}}} $ und die hermitesch adjungierten Matrizen $ \gamma ^{\mu \,\dagger } $ den Matrizen $ \,\gamma ^{\mu }\, $ äquivalent, denn sie erfüllen ebenfalls die Dirac-Algebra. Es gibt daher eine Matrix $ A $ und eine Matrix $ C $, so dass

$ C\gamma ^{\mu }C^{-1}=-\gamma ^{\mu \,{\text{T}}}\ ,\quad A\gamma ^{\mu }A^{-1}=\gamma ^{\mu \,\dagger }\,. $

Die Matrix $ A $ ist zur Konstruktion von Skalaren, Vektoren und Tensoren aus Spinoren wichtig, die Matrix $ C $ tritt bei der Ladungskonjugation auf.

Jedes Produkt mehrerer Dirac-Matrizen lässt sich bis auf ein Vorzeichen als Produkt verschiedener Dirac-Matrizen in lexographischer Ordnung schreiben, denn das Produkt zweier verschiedener Gamma-Matrizen kann auf Kosten eines Vorzeichens umgeordnet werden. Zudem ist das Quadrat jeder Gamma-Matrix 1 oder -1. Die Produkte verschiedener Gamma-Matrizen bilden zusammen mit der Eins-Matrix und den negativen Matrizen eine Gruppe mit den 32 Elementen,

$ \pm 1\,,\,\pm \gamma ^{\mu }\,,\,\pm \gamma ^{\mu }\gamma ^{\nu }\,,\,\mu <\nu \,,\,\pm \gamma ^{\lambda }\gamma ^{\mu }\gamma ^{\nu }\,,\,\lambda <\mu <\nu \,,\,\pm \gamma ^{0}\gamma ^{1}\gamma ^{2}\gamma ^{3}\,,\,{\text{wobei}}\,\lambda ,\mu ,\nu \in \{0,1,2,3\}\,. $

Da jede Darstellung einer endlichen Gruppe bei geeigneter Basiswahl unitär ist, ist auch jede Darstellung der Gamma-Matrizen bei geeigneter Wahl der Basis unitär. Zusammen mit der Dirac-Algebra heißt dies, dass $ \gamma ^{0} $ hermitesch und die drei anderen $ \gamma $-Matrizen antihermitesch sind,

$ \gamma ^{0\,\dagger }=\gamma ^{0}\,,\,\gamma ^{1\,\dagger }=-\gamma ^{1}\,,\,\gamma ^{2\,\dagger }=-\gamma ^{2}\,,\,\gamma ^{3\,\dagger }=-\gamma ^{3}\,. $

In unitären Darstellungen bewirkt $ A=\gamma ^{0} $ die Äquivalenztransformation zu den adjungierten Matrizen

$ \gamma ^{0}\gamma ^{\mu }\gamma ^{0}=\gamma ^{\mu \,\dagger }\,. $

Mithilfe der Eigenschaften von $ \gamma ^{5} $ kann gezeigt werden, dass die Spur jedes Produktes von Gamma-Matrizen mit einer ungeraden Anzahl von Faktoren verschwindet.

$ {\begin{aligned}{\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}{\bigr )}&={\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}\gamma ^{5}\gamma ^{5}{\bigr )}=-{\text{Spur}}\,{\bigl (}\gamma ^{5}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}\gamma ^{5}{\bigr )}\\&=-{\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}\gamma ^{5}\gamma ^{5}{\bigr )}=-{\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}{\bigr )}\end{aligned}} $

Im vorletzten Schritt haben wir dabei verwendet, dass die Spur eines Produktes sich bei zyklischer Vertauschung der Faktoren nicht ändert und demnach $ {\text{Spur}}\,(\gamma ^{5}\,B)={\text{Spur}}\,(B\,\gamma ^{5}) $ gilt.

Für die Spur eines Produktes von zwei Gamma-Matrizen gilt (weil die Spur zyklisch ist)

$ {\text{Spur}}\,\gamma ^{\mu }\,\gamma ^{\nu }={\frac {1}{2}}{\text{Spur}}(\,\gamma ^{\mu }\,\gamma ^{\nu }+\gamma ^{\nu }\,\gamma ^{\mu })={\frac {2\,\eta ^{\mu \nu }}{2}}{\text{Spur 1}}=4\,\eta ^{\mu \nu }\,. $

Die Spur von vier Gamma-Matrizen reduziert man mit der Dirac-Algebra auf die Spur von zwei.

$ {\begin{array}{rcl}2\,{\text{Spur}}\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }&=&{\text{Spur}}(\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }+\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }\,\gamma ^{\kappa })\\&=&{\text{Spur}}(\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }+\gamma ^{\lambda }\,\gamma ^{\kappa }\,\gamma ^{\mu }\,\gamma ^{\nu }\\&&\ \ \ \ -\gamma ^{\lambda }\,\gamma ^{\kappa }\,\gamma ^{\mu }\,\gamma ^{\nu }-\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\kappa }\,\gamma ^{\nu }\\&&\ \ \ \ +\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\kappa }\,\gamma ^{\nu }+\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }\,\gamma \kappa )\\&=&2\,\eta ^{\kappa \lambda }{\text{Spur}}(\gamma ^{\mu }\,\gamma ^{\nu })-2\,\eta ^{\kappa \mu }{\text{Spur}}(\gamma ^{\lambda }\,\gamma ^{\nu })+2\,\eta ^{\kappa \nu }{\text{Spur}}(\gamma ^{\lambda }\,\gamma ^{\mu })\end{array}} $

Daher gilt :

$ {\begin{array}{rcl}{\text{Spur}}\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }&=&4\,(\eta ^{\kappa \lambda }\,\eta ^{\mu \nu }-\eta ^{\kappa \mu }\,\eta ^{\lambda \nu }+\eta ^{\kappa \nu }\,\eta ^{\lambda \mu })\end{array}} $

Falls also verschiedene Dirac-Matrizen in einem Produkt nicht paarweise auftauchen, verschwindet die Spur des Produktes. Daraus folgt unter anderem, dass die sechzehn Matrizen, die man als Produkt von Null bis vier verschiedenen Gamma-Matrizen erhält, linear unabhängig sind.

Dirac-Gleichung

Dirac führte die Gamma-Matrizen ein, um die Klein-Gordon-Gleichung, die eine Differentialgleichung zweiter Ordnung ist, in eine Gleichung erster Ordnung umzuwandeln.

In natürlichen Einheiten kann die Dirac Gleichung wie folgt geschrieben werden

$ (i\gamma ^{\mu }\partial _{\mu }-m)\psi =0 $

wobei $ \psi $ ein Dirac-Spinor ist.

Multpliziert man beide Seite mit $ -(i\gamma ^{\nu }\partial _{\nu }+m) $ erhält man

$ (\eta ^{\mu \nu }\partial _{\mu }\partial _{\nu }+m^{2})\psi =(\partial ^{2}+m^{2})\psi =0, $

also gerade die Klein-Gordon-Gleichung für ein Teilchen der Masse $ m $.

Zusammenhang zu Lorentz-Transformationen

Die sechs Matrizen

$ \Sigma ^{\mu \nu }={\frac {1}{4}}{\bigl (}\gamma ^{\mu }\gamma ^{\nu }-\gamma ^{\nu }\gamma ^{\mu }{\bigr )} $

bilden die Basis einer Lie-Algebra, die der Lie-Algebra der Lorentztransformationen isomorph ist. Sie erzeugen die zu Lorentztransformationen (die stetig mit der 1 zusammenhängen) gehörigen Transformationen der Spinoren $ \psi $.

Chiralität

Aus $ (\gamma ^{5})^{2}=1 $ und $ {\text{Spur}}\,\gamma ^{5}=0 $ folgt, dass die Matrizen

$ P_{L}={\frac {1-\gamma ^{5}}{2}}\,,\quad P_{R}={\frac {1+\gamma ^{5}}{2}} $

Projektoren sind,

$ (P_{L})^{2}=P_{L}\,,\,(P_{R})^{2}=P_{R}\,, $

die auf zueinander komplementäre, zweidimensionale Unterräume projizieren,

$ P_{L}\,P_{R}=0\,,\ {\text{Spur}}\,P_{L}={\text{Spur}}\,P_{R}=2\,,\quad P_{L}+P_{R}=1\,. $

Diese Unterräume unterscheiden Teilchen verschiedener Chiralität.

Weil $ \gamma ^{5} $ mit den Erzeugenden von Spinortransformationen vertauscht,

$ \gamma ^{5}\Sigma ^{\mu \nu }=\Sigma ^{\mu \nu }\gamma ^{5}\,, $

sind die Unterräume, auf die $ P_{L} $ und $ P_{R} $ projizieren, invariant unter den von $ \Sigma ^{\mu \nu } $ erzeugten Lorentztransformationen, mit anderen Worten: Die links- und rechtshändigen Anteile, $ \psi _{L}=P_{L}\psi $ und $ \psi _{R}=P_{R}\psi $, eines Spinors $ \psi $ transformieren getrennt voneinander.

Parität

Wegen $ \gamma ^{0}\gamma ^{5}\gamma ^{0}=-\gamma ^{5} $ ändert ein Term, der $ \gamma ^{5} $ enthält, unter der Paritätstransformation sein Vorzeichen, es macht also aus Skalaren Pseudoskalare und aus Vektoren Pseudovektoren.

Allgemein folgen Größen, die man aus $ {\overline {\psi }}=\psi ^{\dagger }A=\psi ^{\dagger }\gamma ^{0} $, Gamma-Matrizen und einem eventuell von $ \psi $ verschiedenen Spinor $ \chi $ zusammensetzt, einem Transformationsgesetz, das am Indexbild ablesbar ist. Es transformieren

  • $ {\overline {\psi }}\chi $ wie ein Skalar,
  • $ {\overline {\psi }}\gamma ^{\mu }\chi $ wie die Komponenten eines Vierervektors,
  • $ {\overline {\psi }}\Sigma ^{\mu \nu }\chi $ wie die Komponenten eines antisymmetrischen Tensors,
  • $ {\overline {\psi }}\gamma ^{\mu }\gamma ^{5}\chi $ wie die Komponenten eines axialen Vierervektors,
  • $ {\overline {\psi }}\gamma ^{5}\chi $ wie ein Pseudoskalar.

Feynman-Slash-Notation

Richard Feynman erfand die nach ihm benannte Slash-Notation (auch Feynman-Dolch oder Feynman-Dagger). In dieser Notation wird das Skalarprodukt eines Lorentzvektors mit dem Vektor der Gamma-Matrizen $ \textstyle \sum _{\mu =0}^{3}\,\gamma ^{\mu }A_{\mu } $ abgekürzt geschrieben als

$ A\!\!\!/\ {\stackrel {\mathrm {def} }{=}}\ \sum _{\mu =0}^{3}\gamma ^{\mu }A_{\mu } $.

Dadurch kann z. B. die Dirac-Gleichung sehr übersichtlich geschrieben werden als

$ {\Bigl (}i\partial \!\!\!/\ -{\frac {mc}{\hbar }}{\Bigr )}\,\psi (x)=0\ , $

oder in natürlichen Einheiten

$ {\Bigl (}i\partial \!\!\!/\ -m{\Bigr )}\,\psi (x)=0\ . $

Dirac-Darstellung

In einer geeigneten Basis haben die Gamma-Matrizen die auf Dirac zurückgehende Form (wir schreiben verschwindende Matrixelemente nicht aus)

$ {\begin{array}{c c}\gamma ^{0}={\begin{pmatrix}1&&&\\&1&&\\&&-1&\\&&&-1\end{pmatrix}}\,,&\gamma ^{1}={\begin{pmatrix}&&&1\\&&1&\\&-1&&\\-1&&&\end{pmatrix}}\,,\\\,&\,\\\gamma ^{2}={\begin{pmatrix}&&&-\mathrm {i} \\&&\mathrm {i} &\\&\mathrm {i} &&\\-\mathrm {i} &&&\end{pmatrix}}\,,&\gamma ^{3}={\begin{pmatrix}&&1&\\&&&-1\\-1&&&\\&1&&\end{pmatrix}}\,.\end{array}} $

Diese Matrizen lassen sich kompakter mit Hilfe der Pauli-Matrizen schreiben (jeder Eintrag steht hier für eine $ 2\times 2 $-Matrix):

$ \gamma ^{0}={\begin{pmatrix}1&\\&-1\end{pmatrix}}\,,\quad \gamma ^{i}={\begin{pmatrix}&\sigma ^{i}\\-\sigma ^{i}&\end{pmatrix}}\,,\;i\in \{1,2,3\}\,,\quad \gamma ^{5}={\begin{pmatrix}&1\\1&\end{pmatrix}}\,. $

Weyl-Darstellung

Die nach Hermann Weyl benannte Weyl-Darstellung heißt auch chirale Darstellung. In ihr ist $ \gamma ^{5} $ diagonal,

$ \gamma ^{5}={\begin{pmatrix}-1&\\&1\end{pmatrix}}\,,\quad P_{L}={\frac {1-\gamma ^{5}}{2}}={\begin{pmatrix}1&\\&0\end{pmatrix}}\,,\quad P_{R}={\frac {1+\gamma ^{5}}{2}}={\begin{pmatrix}0&\\&1\end{pmatrix}}\,. $

Im Vergleich zur Dirac-Darstellung werden $ \gamma ^{0} $ und $ \gamma ^{5} $ verändert, die räumlichen $ \gamma $-Matrizen bleiben unverändert:

$ \gamma ^{0}={\begin{pmatrix}&1\\1&\end{pmatrix}}\,,\quad \gamma ^{i}={\begin{pmatrix}&\sigma ^{i}\\-\sigma ^{i}&\end{pmatrix}}\,,\quad \gamma ^{5}={\begin{pmatrix}-1&\\&1\end{pmatrix}} $

Die Weyldarstellung ergibt sich durch einen unitären Basiswechsel aus der Dirac-Darstellung,

$ \gamma _{\text{Weyl}}^{\mu }=U\,\gamma _{\text{Dirac}}^{\mu }U^{-1}{\text{ mit }}U={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1&1\\-1&1\end{pmatrix}},\ U^{-1}=U^{\dagger }={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1&-1\\1&1\end{pmatrix}}\,. $

Spinortransformationen transformieren in der Weyl-Basis die ersten beiden und die letzten beiden Komponenten des Dirac-Spinors getrennt.

Die chirale Darstellung ist von besonderer Bedeutung in der Weyl-Gleichung, der masselosen Dirac-Gleichung.

Majorana-Darstellung

In der Majorana-Darstellung sind alle Gamma-Matrizen imaginär. Dann ist die Dirac-Gleichung ein reelles Differentialgleichungssystem,

$ {\begin{aligned}\gamma ^{0}&={\begin{pmatrix}&-\sigma ^{2}\\-\sigma ^{2}&\end{pmatrix}}\,,&\gamma ^{1}&={\begin{pmatrix}&\mathrm {i} \sigma ^{3}\\\mathrm {i} \sigma ^{3}&\end{pmatrix}}\,,&\\&\,&&\\\gamma ^{2}&={\begin{pmatrix}\mathrm {i} &\\&-\mathrm {i} \end{pmatrix}}\,,&\gamma ^{3}&={\begin{pmatrix}&-\mathrm {i} \sigma ^{1}\\-\mathrm {i} \sigma ^{1}&\end{pmatrix}}\,,&\gamma ^{5}&={\begin{pmatrix}&\mathrm {i} \\-\mathrm {i} &\end{pmatrix}}\,.\end{aligned}} $

Literatur

  • James Bjorken und Sidney Drell: Relativistische Quantenmechanik, BI-Wissenschaftsverlag, Mannheim, 1990, (BI-Hochschultaschenbuch Band 98), ISBN 3-411-00098-8
  • Michael Peskin and Daniel V. Schroeder: An Introduction to Quantum Field Theory, Addison-Wesley Publishing Co., New York, 1995, ISBN 0-201-50397-2
  • Josef-Maria Jauch and Fritz Rohrlich: The theory of photons and electrons, Addison-Wesley Publishing Co., New York, 1955
  • Ferdinando Gliozzi, Joel Sherk and David Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B122, 253-290, 1977. (Dirac-Algebra in höheren Dimensionen)

Die cosmos-indirekt.de:News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.