Bauxit
Bauxit ist ein Aluminium-Erz, das vorwiegend aus den Aluminium-Mineralen Gibbsit (Hydrargillit) γ-Al(OH)3, Böhmit γ-AlO(OH), Diaspor α-AlO(OH), ferner den Eisenoxiden Hämatit Fe2O3 und Goethit FeO(OH), dem Tonmineral Kaolinit und geringen Anteilen des Titanoxids Anatas TiO2 besteht. Seinen Namen verdankt es seinem ersten Fundort Les Baux-de-Provence in Südfrankreich, wo es 1821 von Pierre Berthier entdeckt wurde.
Entstehung
In den Geowissenschaften werden Lateritbauxite (Silikatbauxite) von den Karstbauxiten (Karbonatbauxite) unterschieden. Die schon früh entdeckten Karbonatbauxite liegen vornehmlich in Europa über Karbonatgesteinen (Kalke und Dolomite), wo sie durch lateritische Verwitterung tonreicher Einlagerungen beziehungsweise tonreicher Lösungsrückstände entstanden. Ihre wirtschaftliche Bedeutung hat gegenüber den Lateritbauxiten stark abgenommen.
Die Lateritbauxite liegen in zahlreichen Ländern des gesamten Tropengürtels. Sie entstanden durch lateritische Verwitterung ganz unterschiedlicher silikatischer Gesteine wie Granit, Gneis, Basalt, Syenit, Ton und Tonschiefer. Gegenüber eisenreichen Lateritdecken bilden sich Bauxite bei besonders intensiver Verwitterung und erhöhter Drainage, die eine Auflösung von Kaolinit unter Bildung von Gibbsit ermöglicht. In den Lagerstätten liegen die aluminiumreichsten Bereiche häufig unter einer eisenreicheren Oberflächenschicht. Im Gegensatz zu den Karbonatbauxiten tritt als Al-Mineral fast ausschließlich Gibbsit auf.
Vorkommen und Gewinnung
Die bedeutendsten Förderländer sind Australien, China, Brasilien, Guinea, Jamaika und Indien. Kamerun hat mit neu entdeckten großen Vorkommen von 500–700 Mio. t die Möglichkeit aufzuschließen.[1] Weitere Vorkommen befinden sich unter anderem in Russland, Venezuela und Suriname (siehe Tabelle). In Europa finden sich die wichtigsten Abbaustätten in Griechenland, Ungarn und Frankreich. Im Jahre 2007 betrug die Weltförderung rund 190 Millionen Tonnen. Die aus heutiger Sicht wirtschaftlich abbauwürdigen gesicherten Bauxitvorkommen dürften den Bedarf auch bei steigender Produktion langfristig decken. Bei einer Erschöpfung der Bauxitvorräte stehen andere Aluminiumrohstoffe in sehr großen Mengen zur Verfügung. Bauxit wird überwiegend im Tagebau gefördert. Dabei werden im Idealfall die durch den Abbau freigesetzten humushaltigen Erdschichten im Sinne einer nachhaltigen, umweltgerechten Entwicklung zunächst zwischengelagert und später zur Rekultivierung verwendet.
Land | Förderung | Reserven | Land | Förderung | Reserven |
---|---|---|---|---|---|
Australien | 64,0 | 5800 | Venezuela | 5,5 | 320 |
China | 32,0 | 700 | Suriname | 5,0 | 580 |
Brasilien | 24,0 | 1900 | Kasachstan | 4,9 | 360 |
Guinea | 14,0 | 7400 | Griechenland | 2,4 | 600 |
Jamaika | 14,0 | 2000 | Guyana | 2,0 | 700 |
Indien | 13,0 | 770 | andere Länder | 6,8 | 3400 |
Russland | 6,0 | 200 | gesamte Welt | 190 | 25000 |
Quelle: U.S. Geological Survey, Mineral Commodity Summaries, January 2008
Siehe auch: Liste der größten Bauxitproduzenten
Verarbeitung
Aus etwa 95 % des abgebauten Bauxits wird Aluminium produziert. Geringe Mengen dienen bei günstiger Zusammensetzung der Herstellung von Al-Chemikalien, Schleifmitteln und feuerfesten Steinen. Ein Nebenprodukt der Aluminiumgewinnung ist Gallium.
Bauxit wird in Druckbehältern bei 150 bis 200 °C in Natronlauge erhitzt, wobei Aluminium als Aluminat in Lösung geht und vom eisenreichen Rückstand (Rotschlamm) abfiltriert wird (Bayer-Verfahren). Aus der Aluminatlauge scheidet sich beim Abkühlen und Zufügung von feinem Aluminiumhydroxid als Kristallisationskeim reiner Gibbsit ab, der durch Glühen in Aluminiumoxid Al2O3 umgewandelt wird. Das Aluminiumoxid wird unter Zusatz von Kryolith als Schmelzmittel bei etwa 1000 °C geschmolzen und in Elektrolyse-Zellen bei hohem Energieeinsatz zu metallischem Aluminium reduziert (Hall-Héroult-Prozess, Schmelzflusselektrolyse).
Geschichte
In Österreich wurde über 80 Jahre lang bis zum Jahr 1964 bei Unterlaussa, das im Gebiet des heutigen Nationalpark Kalkalpen liegt, Bauxit abgebaut.
Weitere Vorkommen gab es in Glanegg in Kärnten, sowie in Großgmain in Salzburg.[2]
Einzelnachweise
- ↑ ERZMETALL 62/2009 No 6,S.392
- ↑ Bauxitbergbau in Salzburg abgerufen am 22. Oktober 2010
Literatur
- Bardossy, G. (1982): Karst Bauxites. Bauxite deposits on carbonate rocks. Elsevier Sci. Publ. 441 S.
- Bardossy, G. und Aleva G.J.J. (1990): Lateritic Bauxites. Developments in Economic Geology 27, Elsevier Sci. Publ., 624 S. ISBN 0-444-98811-4
Weblinks