Acrylnitril-Butadien-Styrol

Strukturformel
Strukturformel von Acrylnitril Strukturformel von Styrol Strukturformel von Butadien
Monomere von ABS
Allgemeines
Name Acrylnitril-Butadien-Styrol
Andere Namen

ABS

CAS-Nummer 9003-56-9
Art des Polymers Copolymer
Kurzbeschreibung farbloser bis grauer Feststoff
Monomer
Monomer Acrylnitril, Butadien und Styrol
Summenformel (C8H8·C4H6·C3H3N)n
Molare Masse 60.000–200.000 g·mol−1
Eigenschaften
Aggregatzustand fest
Dichte 1,04 bis 1,12 g·cm−3
Glastemperatur −85 °C (Butadien), 106–122 °C (Styrol), 133–142 °C (Acrylnitril)[1]
Elastizitätsmodul 1900–2700 MPa (DIN 53457)
Löslichkeit
  • unlöslich in Wasser, Ethanol, Mineralölen[2]
  • löslich in Aceton, Methylethylketon, Dichlormethan[2]
Zugfestigkeit 32 bis 56 N mm−2
Wärmeleitfähigkeit 0,18 W m−1 K−1
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]
07 – Achtung

Achtung

H- und P-Sätze H: 302-315-319-335
P: 261-​305+351+338 [4]
EU-Gefahrstoffkennzeichnung [3]
keine Gefahrensymbole
R- und S-Sätze R: keine R-Sätze
S: keine S-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Acrylnitril-Butadien-Styrol-Copolymerisat (Kurzzeichen ABS) ist ein synthetisches Terpolymer aus den drei unterschiedlichen Monomerarten Acrylnitril, 1,3-Butadien und Styrol und gehört zu den amorphen Thermoplasten. Die Mengenverhältnisse können dabei variieren von 15–35 % Acrylnitril, 5–30 % Butadien und 40–60 % Styrol.

Datei:ABS grains.jpg
ABS-Novodur-Granulat (Farbton: natur)

Herstellung

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.

ABS wird großtechnisch durch Pfropfcopolymerisation hergestellt, es kann aber auch durch Blenden (Vermischen) der fertigen Polymere erfolgen. Bei den durch Pfropfcopolymerisation hergestellten ABS unterscheidet man das Emulsions- und In-Masse-Verfahren:

Emulsionsverfahren
Die Rohstoffe werden nach und nach der Polymerisation hinzugefügt. Dadurch entstehen Kondensate, welche entgast werden müssen. Die Butadienpartikel werden durch den Prozess zerkleinert und ergeben somit den für ABS typischen gelben Farbton.
In-Masse-Verfahren
Alle Rohstoffe werden gemeinsam durch alle Stufen der Polymerisation geführt. Es entstehen kaum Kondensate und die Entgasung entfällt auf ein Minimum. Die Butadienpartikel bleiben groß. Dadurch ist das ABS heller (besser für Selbsteinfärbung) und es enthält weniger Fremdstoffe (geringere Emissionen). Durch die größeren Butadienpartikel ist In-Masse-ABS bei geringerem Butadiengehalt schlagzäher.

Der Energie- und Rohstoffbedarf zur Herstellung von ABS beträgt zusammen in Erdöl etwa die doppelte Menge.

Eigenschaften

ABS ist in Rohform ein farbloser bis grauer Feststoff. Es besitzt eine hohe Oberflächenhärte (ist damit für kratzfeste und matt glänzende Oberflächen geeignet), besitzt eine gute Schlagfestigkeit und eine gute Ölbeständigkeit. Es kann mit Methylethylketon (MEK) und Dichlormethan (Methylenchlorid) (gesundheitsschädlich!) geklebt werden.

Weitere Eigenschaften sind:

  • Reißdehnung (DIN 53455): 15 bis 30 %
  • linearer Ausdehnungskoeffizient: 60-110 K−1·10−6
  • spez. Wärmekapazität: 1,3 kJ kg−1 K−1
  • Dauergebrauchstemperatur: max. 85 bis 100 °C
  • elektrische Durchschlagsfestigkeit bis zu 120 kV mm−1

Verwendung

Halbautomatische Espressomaschine mit ABS als Obermaterial

Deutlich mehr als 50 % der ABS-Produktionsmenge in Westeuropa werden von Automobil- und Elektroindustrie verbraucht.

ABS eignet sich gut zum Beschichten mit Metallen (Galvanisieren) und Polymeren. Dies macht es zum Beispiel möglich, eine verchromte Oberfläche auf einem Kunststoffteil zu erhalten. Beispiele für den Einsatz von ABS sind thermogeformte Teile aus Platten und Folien, Automobil- und Elektronikteile, Motorradhelme, Spielzeug (zum Beispiel Lego-Bausteine), Gehäuse von Elektrogeräten, Kantenbänder (Umleimer) in der Möbelindustrie, Konsumgüter mit erhöhten Ansprüchen an die Schlagzähigkeit, Musikinstrumente (zum Beispiel Klarinetten- und Saxophon-Mundstücke oder Ukulelen-Korpusse, Gitarren-Bindings) und die Seitenwangen von in Sandwichbauweise hergestellten Ski und Snowboards.

Verarbeitung

ABS schmilzt in einem Temperaturbereich von 220–250 °C (Hochtemperatur-ABS-Blends noch höher) und kann im flüssigen Zustand im Spritzgussverfahren oder per Extruder geformt werden. Als eine spezielle Form letzterer Methode stellt das Material auch üblicherweise den Werkstoff dar, der von 3D-Druckern verdruckt wird. Standard-ABS erweichen um 95–110 °C (siehe Vicat-Erweichungstemperatur).

Recycling

Recycling-Code für Acrylnitril-Butadien-Styrol

Bei sauberer Trennung kann ABS problemlos wieder eingeschmolzen und wiederverwendet werden. Zur Sortierung stehen maschinelle Verfahren zur Verfügung, die es aus üblichen Abfallmischungen zu einem Reinheitsgrad von über 99 % separieren können.[5]

Normen

  • DIN EN ISO 2580-1 Kunststoffe – Acrylnitril-Butadien-Styrol (ABS)-Formmassen – Teil 1: Bezeichnungssystem und Basis für Spezifikationen (ISO 2580-1:2002). Deutsche Fassung EN ISO 2580-1:2002.
  • DIN EN ISO 2580-2 Kunststoffe – Acrylnitril-Butadien-Styrol (ABS)-Formmassen – Teil 2: Herstellung von Probekörpern und Bestimmung von Eigenschaften (ISO 2580-2:2003). Deutsche Fassung EN ISO 2580-2:2003.

Handelsnamen

  • Cycolac (Sabic IP)
  • Kumho (Kumho)
  • LG-ABS (LG Chem)
  • Lustran/Novodur (INEOS/Styrolution)
  • Magnum (Styron)
  • Polylac (ChiMei)
  • Polyman (A. Schulman)
  • Ronfalin (Perrite)
  • Starex (Samsung Cheil)
  • Saxalac (SAX Polymers)
  • Sinkral (Polimeri)
  • Terluran (Styrolution)
  • Toyolac (TORAY)
  • Rotec ABS (Romira)

Ähnliche Kunststoffe

Quellen

  1. Mettler-Toledo, Applikationssammlung Thermische Analyse Thermoplaste, 1996
  2. 2,0 2,1 MSDS ABS (unicgroup)
  3. MSDS ABS (Gehr)
  4. 4,0 4,1 Datenblatt Poly(acrylonitrile-co-butadiene-co-styrene), acrylonitrile ~40 wt. %, powder bei Sigma-Aldrich, abgerufen am 27. Dezember 2012.
  5. http://www.anl.gov/techtransfer/Available_Technologies/Environmental_Research/Froth.html

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.