Zerfallsreihe
Eine Zerfallsreihe ist allgemein die Abfolge der Produkte des radioaktiven Zerfalls, die entsteht, wenn ein radioaktives Nuklid sich in andere Nuklide umwandelt ("zerfällt"). Das zuerst entstehende Nuklid wird Tochternuklid genannt, das dem Tochternuklid folgende Enkelnuklid, das dem Enkelnuklid folgende Urenkelnuklid usw.
Besonders wichtig sind die Zerfallsreihen der schweren natürlichen Radionuklide wie Uran und Thorium. Die natürlichen Zerfallsarten lassen die Massenzahl entweder unverändert, wie der Epsilon- und der Betazerfall (ein Neutron wird in ein Proton umgewandelt), oder vermindern sie um vier Einheiten (Alphazerfall). Daraus ergeben sich für schwere natürliche Radionuklide vier verschiedene Zerfallsreihen. Die Massenzahl (am Formelsymbol des Nuklids links hochgestellt geschrieben) ordnet es über den Rest beim Teilen durch vier einer dieser Zerfallsreihen eindeutig zu.[1]
Die natürlichen Zerfallsreihen
Es gibt drei vollständig vorhandene natürliche Zerfallsreihen:
- Uran-Radium-Reihe: Ausgangsnuklid Uran-238, Endnuklid Blei-206; (4n+2-Reihe)
- Uran-Actinium-Reihe: Ausgangsnuklid Uran-235, bei der Verlängerung zu den künstlichen Transuranen ist Plutonium-239 die erste Vorgängerstufe von Uran-235, Endnuklid Blei-207; (4n+3-Reihe)
- Thorium-Reihe: Ausgangsnuklid Thorium-232, jedoch sind noch seine Vorgängernuklide bis zum Plutonium-244 auf der Erde vorhanden[2], sodass die Reihe streng genommen schon dort beginnt. Endnuklid Blei-208; (4n-Reihe)
Die 4. Zerfallsreihe kommt bis auf den letzten Schritt in der Natur nicht vor, da das langlebige, namensgebende und am Anfang stehende Neptunium-237 dieser Reihe praktisch vollständig zerfallen ist und die meisten Zwischenprodukte kurze Halbwertszeiten haben. Nur das letzte Radionuklid dieser Reihe, Bismut-209, ist wegen seiner extrem langen Halbwertszeit noch vorhanden und wurde deshalb sogar lange für das Endnuklid der Reihe gehalten, bis 2003 entdeckt wurde, dass es ein Alphastrahler mit 19 Trillionen Jahren Halbwertszeit ist.
- Neptunium-Reihe: Ausgangsnuklid ist nach dem Namen Neptunium-237. Oft wird jedoch Plutonium-241 als ihr Ausgangsnuklid betrachtet, Endnuklid Thallium-205; (4n+1-Reihe)
Aus einer vorhandenen Menge eines instabilen Nuklids bildet sich durch Zerfall ein Gemisch der Nuklide, die ihm in der Zerfallsreihe folgen, bevor irgendwann alle Kerne die Reihe bis zum Endnuklid durchlaufen haben. In dem Gemisch sind Nuklide mit kurzer Halbwertszeit nur in geringer Menge vorhanden, während solche mit längerer Halbwertszeit sich entsprechend stärker ansammeln.
Lage in der Nuklidkarte
Neutronenzahl | N = | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | |
Curium | Z = 96 | 242Cm |
244Cm |
246Cm | |||||||||||||||||||||||||
Americium | Z = 95 | 240Am |
241Am |
242Am |
243Am |
244Am |
|||||||||||||||||||||||
Plutonium | Z = 94 | 236Pu |
237Pu |
238Pu |
239Pu |
240Pu |
241Pu |
242Pu |
243Pu |
244Pu | |||||||||||||||||||
Neptunium | Z = 93 | 233Np |
234Np |
235Np |
236Np |
237Np |
238Np |
239Np |
240Np |
||||||||||||||||||||
Uran | Z = 92 | 230U |
231U |
232U |
233U |
234U |
235U |
236U |
237U |
238U |
239U |
240U |
|||||||||||||||||
Protactinium | Z = 91 | 229Pa |
230Pa |
231Pa |
232Pa |
233Pa |
234Pa |
||||||||||||||||||||||
Thorium | Z = 90 | 226Th |
227Th |
228Th |
229Th |
230Th |
231Th |
232Th |
233Th |
234Th |
|||||||||||||||||||
Actinium | Z = 89 | 225Ac |
226Ac |
227Ac |
228Ac |
||||||||||||||||||||||||
Radium | Z = 88 | 221Ra |
222Ra |
223Ra |
224Ra |
225Ra |
226Ra |
227Ra |
228Ra |
||||||||||||||||||||
Francium | Z = 87 | 221Fr |
222Fr |
223Fr |
|||||||||||||||||||||||||
Radon | Z = 86 | 217Rn |
218Rn |
219Rn |
220Rn |
222Rn |
223Rn |
||||||||||||||||||||||
Astat | Z = 85 | 215At |
217At |
218At |
219At |
||||||||||||||||||||||||
Polonium | Z = 84 | 210Po |
211Po |
212Po |
213Po |
214Po |
215Po |
216Po |
218Po |
||||||||||||||||||||
Bismut | Z = 83 | 209Bi |
210Bi |
211Bi |
212Bi |
213Bi |
214Bi |
215Bi |
|||||||||||||||||||||
Blei | Z = 82 | 206Pb |
207Pb |
208Pb |
209Pb |
210Pb |
211Pb |
212Pb |
214Pb |
||||||||||||||||||||
Thallium | Z = 81 | 205Tl |
206Tl |
207Tl |
208Tl |
209Tl |
210Tl |
||||||||||||||||||||||
Quecksilber | Z = 80 | 206Hg |
|||||||||||||||||||||||||||
Neutronenzahl | N = | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | |
Legende: | Uran-Radium-Reihe | Uran-Actinium-Reihe | (Plutonium-) Thorium-Reihe | Neptunium-Reihe | (Pfeile nicht maßstäblich) | ||||||||||||||||||||||||
Fortsetzung | Fortsetzung | Fortsetzung | Fortsetzung | ||||||||||||||||||||||||||
Historische Bezeichnungen
In der klassischen Zeit der Erforschung der radioaktiven Zerfallsreihen wurden die verschiedenen Nuklide mit anderen Namen bezeichnet, an denen sich die Zugehörigkeit zu einer natürlichen Zerfallsreihe und die Ähnlichkeit in den Eigenschaften erkennen ließ (z. B. sind Radon, Thoron und Actinon alles Edelgase)[3]:
Aktueller Name | Historischer Name | Langversion des Namens |
---|---|---|
238U | UI | Uran I |
235U | AcU | Actinuran |
234U | UII | Uran II |
234mPa | UX2 | Uran X2 |
234Pa | UZ | Uran Z |
231Pa | Pa | Protactinium |
234Th | UX1 | Uran X1 |
232Th | Th | Thorium |
231Th | UY | Uran Y |
230Th | Io | Ionium |
228Th | RdTh | Radiothor |
227Th | RdAc | Radioactinium |
228Ac | MsTh2 | Mesothor 2 |
227Ac | Ac | Actinium |
228Ra | MsTh1 | Mesothor 1 |
226Ra | Ra | Radium |
224Ra | ThX | Thorium X |
223Ra | AcX | Actinium X |
223Fr | AcK | Actinium K |
222Rn | Rn | Radon |
220Rn | Tn | Thoron |
219Rn | An | Actinon |
218Po | RaA | Radium A |
216Po | ThA | Thorium A |
215Po | AcA | Actinium A |
214Po | RaC' | Radium C' |
212Po | ThC' | Thorium C' |
211Po | AcC' | Actinium C' |
210Po | RaF | Radium F |
214Bi | RaC | Radium C |
212Bi | ThC | Thorium C |
211Bi | AcC | Actinium C |
210Bi | RaE | Radium E |
214Pb | RaB | Radium B |
212Pb | ThB | Thorium B |
211Pb | AcB | Actinium B |
210Pb | RaD | Radium D |
208Pb | ThD | Thorium D |
207Pb | AcD | Actinium D |
206Pb | RaG | Radium G |
210Tl | RaC" | Radium C" |
208Tl | ThC" | Thorium C" |
207Tl | AcC" | Actinium C" |
Die drei natürlichen Zerfallsreihen sähen in dieser alten Bezeichnungsweise folgendermaßen aus:
- Thorium-Reihe: Th → MsTh1 → MsTh2 → RdTh → ThX → Tn → ThA → ThB → ThC → ThC' (oder ThC") → ThD
- Uran-Radium-Reihe: UI → UX1 → UX2 (→ UZ) → UII → Io → Ra → Rn → RaA → RaB → RaC → RaC' (oder RaC") → RaD → RaE → RaF → RaG
- Uran-Actinium-Reihe: AcU → UY → Pa → Ac → RdAc (oder AcK) → AcX → An → AcA → AcB → AcC → AcC" (oder AcC') → AcD
Siehe auch
Einzelnachweise
- ↑ Radioanalytisches Labor Buheitel: Delayed-Coincidence Liquid Scintillation Spectrometry (DCLSS). (geprüft am: 2. März 2008)
- ↑ D. C. Hoffman, F. O. Lawrence, J. L. Mewherter, F. M. Rourke: Detection of Plutonium-244 in Nature. In: Nature. 234, 1971, S. 132–134 (doi:10.1038/234132a0).
- ↑ C. M. Lederer, J. M. Hollander, I. Perlman: Table of Isotopes. 6. Auflage, Wiley & Sons, New York 1968
Weblinks