Röntgenmikroskopie

Röntgenmikroskopie ist ein Mikroskopieverfahren, das statt sichtbarem Licht Röntgenstrahlung, also Strahlung im Wellenlängenbereich von 10 nm bis 1 pm nutzt.

Röntgenstrahlung bietet zunächst den Vorteil der kürzeren Wellenlänge, was potenziell höhere Auflösung ermöglicht. Die Auflösung eines Mikroskopes ist durch die halbe Wellenlänge begrenzt. Darüber hinaus unterscheidet sich die Wechselwirkung von Röntgenstrahlung mit Materie von der des sichtbaren Lichtes (zum Beispiel Durchdringungsvermögen, immanenter Elementkontrast, Brechzahlen), womit ergänzende Informationen über die Probe gewonnen werden können. Vor allem steigt die Informationstiefe an. Es können Informationen auch aus tieferen Schichten als mit Lichtmikroskopen gewonnen werden. Problematisch war bisher, dass zum Bau eines Mikroskopes Sammellinsen notwendig sind. Um eine Sammellinse bauen zu können, muss man jedoch ein Material für die Linse benutzen, dessen Brechungsindex größer als 1 ist. Für den Frequenzbereich von Röntgenstrahlung sind die Brechungsindizes für verfügbare Materialien jedoch kleiner 1. Man bedient sich unter Anwendung des Fresnelschemas sogenannter Zonenplatten, um den Röntgenstrahl zu fokussieren. Diese fungieren als Linsen analog zum klassischen Mikroskop; allerdings nutzen sie nicht die Brechung, sondern die Beugung der Röntgenwellen. Brauchbare Linsen für Röntgenstrahlung, die nach dem Prinzip der Brechung (d.h. der "Refraktion") funktionieren, sind nur für Wellenlängen unter 1 nm Wellenlänge herstellbar (s. Refraktive Röntgenlinse), und für den wichtigen Spektralbereich des "Wasserfensters" zwischen 2,4 nm und 4,4 nm, in dem wässrige Proben einen guten Absorptions- und Phasenkontrast zeigen, daher nicht realisierbar. Die moderne, hochauflösende Röntgenmikroskopie erreicht 20 - 30 nm Auflösung und nutzt in diesem Spektralbereich ausschließlich Fresnel-Zonenplatten, vgl. auch Röntgenoptik .

Man unterscheidet zwischen abbildenden und rasternden Mikroskopen.

Abbildende Mikroskope arbeiten in der Regel in Transmission. Dabei wird das untersuchte Probenstück von "vorne" gleichmäßig ausgeleuchtet und die die Probe durchdringende Strahlung durch eine Optik auf einen ortsauflösenden Detektor (z.B. CCD-Sensor) abgebildet.

Bei den rasternden Mikroskopen wird die Röntgenstrahlung mit Hilfe von Spiegeln unter streifendem Einfall, Spiegel mit Vielschichtsystemen, Fresnel-Zonenplatten oder refraktiven Röntgenlinsen fokussiert. Die Probe wird durch den Fokus bewegt und an jeder Probenposition das gesamte von der Probe kommende Licht gemessen und als Helligkeitswert für das Bild genommen. Neben dem reflektierten Licht können auch andere von der Probe stammende Teilchen oder Strahlung zur Bildgebung genutzt werden.

Dies sind beispielsweise:

  • Streustrahlung (Beugungsanalyse)
  • Reflektierte Strahlung
  • Transmittierte Strahlung
  • Lumineszenzlicht
  • Die gesamte Elektronenausbeute
  • Photoelektronen
  • Photonen-stimulierte Ionen-Desorption

Um hochaufgelöste Bilder mit einem abbildenden Röntgenmikroskop in wenigen Sekunden und mit einem rasternden Röntgenmikroskop in wenigen Minuten aufnehmen zu können, wird sehr intensive Strahlung (Brillanz) benötigt. Hierfür eignen sich als Röntgenquellen hauptsächlich die gerichtete Synchrotronstrahlung und neuerdings auch Plasmaquellen.

Gegenüber Elektronenmikroskopen ist für Röntgenmikroskope von Vorteil, dass wesentlich dickere Proben - bis zu typisch 10 µm - untersuchbar sind, dass dabei die in den Proben deponierte Dosis bis zu einem Faktor von 10 000 geringer ist und dass bei den Proben keine elektrische Leitfähigkeit vorausgesetzt wird. Biologische Proben können "naturbelassen" bleiben; d.h sie müssen nicht - wie für die Untersuchung im Elektronenmikroskop nötig - mit Schwermetall gefärbt, getrocknet, in ein Stützmaterial eingebettet und nach dessen Erhärtung in typisch 100 nm dünne Schichten geschnitten werden.

Entsprechend hoch sind die Erwartungen, mit der Röntgenmikroskopie artefaktfreie Abbildungen zu erhalten, was sich z.T. schon bestätigte.


Weblinks

Newsmeldungen wie "Röntgenmikroskopie" auf cosmos-indirekt.de

01.02.2019
Elektrodynamik
Virtuelle Linse verbessert Röntgenmikroskopie
Röntgenstrahlen ermöglichen einzigartige Einblicke in das Innere von Materialien, Gewebe und Zellen.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

04.03.2021
Exoplaneten
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
04.03.2021
Exoplaneten
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
01.03.2021
Sonnensysteme - Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik - Optik - Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars