Rastersondenmikroskopie

Laborinstallation eines Ultrahochvakuum-Rasterkraftmikroskops am Institut für Physik der Universität Basel
Portables Rastertunnelmikroskop der Firma Nanosurf®
Bild einer Graphitoberfläche, dargestellt durch ein Rastertunnelmikroskop. Die blauen Punkte zeigen die Lage der einzelnen Atome der hexagonalen Graphitstruktur.

Rastersondenmikroskopie (englisch scanning probe microscopy, SPM) ist der Überbegriff für alle Arten der Mikroskopie, bei welchen das Bild nicht mit einer optischen oder elektronenoptischen Abbildung (Linsen) erzeugt wird wie beim Lichtmikroskop (LM) oder dem Rasterelektronenmikroskop (REM), sondern über die Wechselwirkung einer sogenannte Sonde mit der Probe. Die zu untersuchende Probenoberfläche wird mittels dieser Sonde in einem Rasterprozess Punkt für Punkt abgetastet. Die sich für jeden einzelnen Punkt ergebenden Messwerte werden dann zu einem digitalen Bild zusammengesetzt.

Funktionsweise

Grob vereinfacht kann man sich die Funktionsweise eines SPM wie das Abtasten einer Schallplatte mittels der Nadel vorstellen. Allerdings wird beim Plattenspieler die Nadel rein mechanisch durch mikroskopische Unebenheiten in der Rille ausgelenkt. Beim SPM hingegen ist die Wechselwirkung zwischen der Sonde (Nadel) und der Probe anderer Natur. Je nach Art dieser Wechselwirkung unterscheidet man folgende SPM-Typen:

  • Rastertunnelmikroskop (RTM), engl. scanning tunneling microscope (STM): Zwischen der Probe und Spitze, welche einander nicht berühren, wird eine Spannung angelegt und der resultierende Tunnelstrom gemessen.
  • Rasterkraftmikroskop (RKM'), engl. atomic force microscope (AFM, auch SFM): Die Sonde wird durch atomare Kräfte, typischerweise Van-der-Waals-Kräfte, ausgelenkt. Die Auslenkung ist proportional zur Kraft, welche sich über die Federkonstante der Sonde berechnen lässt.
  • Magnetkraftmikroskop (MKM), engl. magnetic force microscope (MFM): Hier werden die magnetischen Kräfte zwischen Sonde und Probe gemessen.
  • Optisches Rasternahfeldmikroskop, engl. near-field scanning optical microscope (SNOM, auch NSOM): Die Wechselwirkung besteht hier aus evaneszenten Wellen.
  • Akustisches Rasternahfeldmikroskop, engl. scanning near-field acoustic microscope (SNAM oder NSAM)

Interessant ist folgender Größenvergleich: Hätten die Atome der untersuchten Probe die Größe von Tischtennis-Bällen, so wäre die Sonde (Messspitze) von der Größe des Matterhorns. Dass man mit einer derart groben Spitze so feine Strukturen abtasten kann, lässt sich wie folgt erklären. Die Spitze der Sonde kann atomar gesehen noch so stumpf sein, trotzdem wird irgend eins der Atome das oberste sein. Da die Wechselwirkungen zwischen Probe und Spitze exponentiell zum Abstand zwischen Probe und Spitze abnimmt, steuert somit nur das vorderste (oberste) Atom der Spitze einen wesentlichen Beitrag bei.

Auflösungsvermögen

Durch dieses Verfahren können Auflösungen bis zu 10 picometer (pm) erreicht werden (Atome haben eine Größe im Bereich von 100 pm). Lichtmikroskope sind durch die Wellenlänge des Lichts beschränkt und erreichen in der Regel nur Auflösungen von ca. 200 bis 300 nm, also etwa der halben Wellenlänge des Lichts. Beim Rasterelektronenmikroskop verwendet man deshalb statt Licht Elektronenstrahlung. Hier kann die Wellenlänge durch Erhöhung der Energie zwar theoretisch beliebig klein gemacht werden, allerdings wird dann der Strahl so "hart", dass er die Probe zerstören würde.

SPM kann aber nicht nur Oberflächen abtasten, sondern es ist auch möglich, einzelne Atome aus der Probe zu entfernen und sie an einem definierten Platz wieder abzusetzen. Bekannt wurden solche Nanomanipulationen durch das Bild des IBM-Forschungslabors, auf welchem der Schriftzug der Firma durch einzelne Xenon-Atome dargestellt wurde (siehe Kapitel Weblinks).

Einfluss auf die Naturwissenschaften

Die Entwicklung der Rastersondenmikroskope seit Beginn der 80er Jahre war aufgrund der deutlich verbesserten Auflösung von weit unter 1 μm und der Möglichkeit der Nanomanipulation eine wesentliche Voraussetzung für die explosionsartige Entwicklung der Nanowissenschaften und der Nanotechnologie seit Mitte der 90er Jahre. Ausgehend von den oben beschriebenen Grundmethoden werden heute noch viele weitere Untermethoden unterschieden, die auf bestimmte zusätzliche Aspekte der benutzten Wechselwirkung eingehen und sich in einer Vielfalt von erweiterten Abkürzungen widerspiegelt: STS, STL, XSTM, XSTS, SPSTM, VT-STM, UHV-AFM, ASNOM u.v.m.).

Analog dazu entstanden Forschungsgebiete wie Nanobiologie, Nanochemie, Nanobiochemie, Nanotribologie, Nanomedizin und viele mehr. Ein AFM (atomic force microscope) wurde mittlerweile sogar schon zum Planeten Mars geschickt, um dessen Oberfläche zu untersuchen (siehe Weblinks).

Literatur

  • C. Julian Chen: Introduction to Scanning Tunneling Mircoscopy. Oxford University Press, Oxford 1993, ISBN 0-19-507150-6 (Englisch)
  • Roland Wiesendanger: Scanning Probe Microscopy and Spectroscopy - Methods and Applications. Cambridge University Press, Cambridge 1994, ISBN 0-521-42847-5 (Englisch)

Siehe auch

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
08.01.2021
Optik - Teilchenphysik
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
08.01.2021
Festkörperphysik - Teilchenphysik
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
07.01.2021
Raumfahrt - Festkörperphysik - Quantenoptik
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
07.01.2021
Astrophysik - Relativitätstheorie
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
05.01.2021
Thermodynamik
Weder flüssig noch fest
E
05.01.2021
Quantenoptik
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
22.12.2020
Galaxien - Sterne
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.