Mittlere freie Weglänge

Erweiterte Suche

Die mittlere freie Weglänge ist die durchschnittliche Weglänge, die ein Teilchen (z. B. Atom, Molekül, Ion oder Elektron) ohne Wechselwirkung mit anderen Teilchen zurücklegt. Unter einer Wechselwirkung wird dabei jede Art von Energie- bzw. Impulsänderung des Teilchens, also jeder Stoßvorgang verstanden.

Hat ein Teilchenstrom im jeweiligen Medium eine Strecke dieser Länge durchlaufen, haben noch 1/e, also rund ein Drittel der Teilchen, keinen Stoß ausgeführt.

Abschätzung bei Gasen

Für ein einfaches Gas, das aber nicht notwendigerweise ein ideales Gas sein muss, erhält man als Abschätzung für die mittlere freie Weglänge $ \lambda $:

$ \lambda ={\frac {1}{n\sigma }} $

mit der Teilchendichte $ n $  (Anzahl der Teilchen pro Volumeneinheit) und dem Wirkungsquerschnitt $ \sigma $. Hierbei wird das vom Stoßquerschnitt des Teilchens in Bewegungsrichtung aufgespannte Zylindervolumen zugrunde gelegt, welches innerhalb der mittleren freien Weglänge im Durchschnitt ein weiteres Teilchen beinhaltet.[1][2]

Für Moleküle erlauben Gleichgewichtsbetrachtungen unter Annahme einer Maxwellschen Gleichgewichtsfunktion eine präzisere Abschätzung:

$ \lambda ={\frac {1}{{\sqrt {2}}\pi nd^{2}}} $

mit einem Minimalabstand $ d $.[3]

Beispiele

Mittlere freie Weglänge eines Gasmoleküls

Die mittlere freie Weglänge eines Gasmoleküls beträgt in Luft etwa 68 Nanometer unter Standardbedingungen.

Nachfolgende Tabelle listet freie Weglängen für Gasmoleküle bei verschiedenen Drücken auf:

Druckbereich Druck in hPa Moleküle pro cm³ mittlere freie Weglänge
Umgebungsdruck 1013 2,7·1019 68 nm
Grobvakuum 300 … 1 1019 … 1016 0,1 … 100 μm
Feinvakuum 1 … 10-3 1016 … 1013 0,1 … 100 mm
Hochvakuum (HV) 10-3 … 10-7 1013 … 109 10 cm … 1 km
Ultrahochvakuum (UHV) 10-7 … 10-12 109 … 104 1 km … 105 km
extr. Ultrahochv. (XHV) <10-12 <104 >105 km

Mittlere freie Weglänge von Elektronen

Die mittlere freie Weglänge von Elektronen ist eine wichtige Größe bei Anwendungen von Elektronenstrahlen im Vakuum (z. B. bei bestimmten oberflächensensitiven analytischen Methoden oder in Braunschen Röhren). Bei Elektronen ist die mittlere freie Weglänge abhängig von der kinetischen Energie.

Im Festkörper kann sie für die meisten Metalle mit der „Universellen Kurve“ abgeschätzt werden. Bei Elektronenenergien um 100 eV ist sie für die meisten Metalle am geringsten, da hier Prozesse im Festkörper, (z. B. Plasmonen, …) angeregt werden können. Bei höheren und niedrigeren Energien sind die mittleren freien Weglängen im Festkörper größer.

Die mittlere freie Weglänge beeinflusst in gasförmigen Isolierstoffen (z. B. Schwefelhexafluorid) die elektrische Durchschlagfestigkeit.

Werden Elektronen im Impulsraum betrachtet (siehe Fermi-Kugel), so ist es schwer mit einer Länge zu argumentieren, und man betrachtet daher die mittlere freie Flugzeit.

Einzelnachweise

  1. Frederick Reif: Statistische Physik. Berkeley Physik Kurs Band 5, vieweg, Braunschweig 1981, ISBN 3-528-18355-1.
  2. Dieter Hänel: Molekulare Gasdynamik. Springer, Berlin / Heidelberg / New York 2004, ISBN 3-540-44247-2.
  3. William C. Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley-Interscience, New York 1999, ISBN 0-471-19410-7.

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.