Ketosäuren

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Brenztraubensäure (α-Carbonsäure, oben), Acetessigsäure (β-Carbonsäure, Mitte) und Lävulinsäure (γ-Carbonsäure, unten).

Ketosäuren, vollständig Ketocarbonsäuren, im deutschen Sprachraum auch häufig als Oxosäuren bezeichnet, sind Carbonsäuren, die eine zusätzliche Carbonylgruppe enthalten. Ihre Eigenschaften sind durch den Abstand der beiden funktionellen Gruppen geprägt. Den Abstand bezeichnet man oft durch griechische Buchstaben (α-ständig = benachbart oder vicinal, β-ständig = 1,3-Abstand etc.).[1]

Biochemie

Ketosäuren spielen im zellulären Geschehen eine zentrale Rolle beim Aminosäurestoffwechsel und bei der Aufrechterhaltung des Redox-Status. α-Ketosäuren enthalten das Kohlenstoffgerüst der analogen α-Aminosäure. β-Ketosäuren sind energiereiche (instabile) Metabolite, die leicht Reaktionen unter CO2-Verlust (Decarboxylierung) eingehen.

Typische biochemische Reaktionen der α- und β-Ketosäuren. Metabolite (blau) von links nach rechts: Lac, Lactat; Ala, Alanin; Pyr (Pyruvat, eine Prototyp α-Ketosäure); PEP, Phosphoenolpyruvat; OA, Oxalacetat (α/β-Ketosäure; Instabilität durch β-Ketofunktion); Mal, Malat; AcCoA, Acetyl Coenzym A. Enzyme (grün) von links nach rechts: LDH, Lactat-Dehydrogenase; PC, Pyruvat-Carboxylase; MDH, Malat-Dehydrogenase (Teil des Malat-Aspartat-Shuttlesystems); PGT, Glutamat/Pyruvat-Transaminase; PK, Pyruvatkinase (Gewinn von 1 ATP); PPD, Pyruvat/Phosphat-Dikinase (C4-Pflanzen; Gebrauch zweier energiereicher Bindungen aus ATP und eines anorganischen Phosphats); PEP-CK, Phosphoenolpyruvat-Carboxykinase (Überführung von OA in PEP); PDH, Pyruvat-Dehydrogenase-Multienzymkomplex (Prototyp einer oxidativen Decarboxylierungsreaktion), ME, Malatenzym (bei Kopplung mit MDH ist NADH,H+ → NADPH,H+ Umwandlung möglich).

α-Ketosäuren

Brenztraubensäure mit ihren Salzen, den Pyruvaten, ist die einfachste α-Ketosäure. Unter Einwirkung einer Pyruvatdecarboxylase kann Brenztraubensäure während der alkoholischen Gärung zu Acetaldehyd (und CO2) bzw. im Multienzymkomplex der Pyruvat-Dehydrogenase zu Acetyl-CoA (und CO2) decarboxyliert werden. Im Citratzyklus gibt es eine weitere Reaktion nach dem gleichen Grundprinzip: die Decarboxylierung des α-Ketoglutarats zu Succinyl-CoA. Coenzyme dieser als „oxidative Decarboxylierung“ bezeichneten Prozesse sind Thiaminpyrophosphat und NAD+, ggf. Coenzym A. Unter anaeroben Bedingungen wird Pyruvat im Säugetierorganismus zu Lactat reduziert (z.B. im Muskel bei intensiver Beanspruchung).

Auch in vitro kann eine analoge Reaktion beobachtet werden: Die relativ schwache C–C-Bindung in der Gruppierung R–CO–COOH kann durch Zugabe konzentrierter Schwefelsäure gespalten werden und es entstehen Kohlenmonoxid und die entsprechende Carbonsäure R–COOH.

Eine weitere typische Reaktion von α-Ketosäuren ist die Transaminierung, die eine wechselseitige Aminierung unter gleichzeitiger Desaminierung von Glutaminsäure beinhaltet, ohne dass freier Ammoniak auftritt. So wird aus Pyruvat Alanin, aus Oxalacetat (einer Verbindung, die zugleich α- und β-Ketosäure ist) Aspartat und aus α-Ketoglutarat Glutamat, Coenzym ist Pyridoxalphosphat.

β-Ketosäuren

Die einfachste β-Ketosäure ist die unbeständige Acetessigsäure. β-Ketosäuren sind meist unbeständige Stoffe, die unter Decarboxylierung zerfallen. Dieser Prozess kann spontan, biochemisch in der Zelle auch katalysiert, ablaufen. Ein Beispiel ist die Decarboxylierung von Oxalacetat in der Gluconeogenese durch Phosphoenolpyruvat-Carboxykinase (PEP-CK) oder durch das Malatenzym (ME). Acetessigsäure zerfällt in Aceton und Kohlendioxid.

γ-Ketosäuren

Die einfachste γ-Ketosäure ist Lävulinsäure.

Einzelnachweise

  1. Brockhaus ABC Chemie, VEB F. A. Brockhaus Verlag Leipzig 1965, S. 670.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.