Interacting Boson Approximation

Bei der Interacting Boson Approximation (IBA) handelt es sich um Näherungsverfahren, um die Struktur von Atomkernen zu beschreiben. Oft wird dieses Verfahren auch als Interacting Boson Model (IBM) bezeichnet. Das Modell eignet sich vor allem für die Beschreibung der Kerne vom Cer bis zum Blei gerader Nukleonzahl. Bei der IBA werden alle Nukleonen außerhalb einer Kernschale paarweise zu Bosonen gekoppelt - in diesem Fall zu Teilchen mit Drehimpuls 0 (s-Boson) oder 2 (d-Boson). Das ursprünglich von Akito Arima und Francesco Iachello 1974 entwickelte Modell koppelt zwei Neutronen zu einem Boson und zwei Protonen zu einem Boson. Eine ähnliche Methode wurde beinahe gleichzeitig von Janssen, Jolos und Dönau entwickelt. Dieses sogenannte IBA-1 Modell eignet sich dementsprechend nur für die Beschreibung von Kernen mit gerader Neutronen und gerade Protonenzahl (gg-Kerne). Der Anwendungsbereich auf die Kerne vom Cer bis zum Blei ist vor allem durch die Tatsache gegeben, dass ein sehr großer Massenbereich zwischen der Schale mit Neutronenzahl 82 und der entsprechenden Protonenschale beim Blei mit Z=82 vorliegt, wo man sehr viele dieser Bosonen in Betracht ziehen muss. Die Bosonenanzahl wird bei dem Modell im vom nächst liegenden Schalenabschluss ab gezählt. Die Kopplung der Bosonen untereinander geschieht durch eine einfache 2-Körperkraft.

Algebraische Struktur

Im Folgenden wird der Formalismus der zweiten Quantisierung verwendet. Für das d-Boson definieren wir die sogenannten d-Bosonen-Erzeugeroperatoren $ d^\dagger_m $ mit $ m=-2,-1,0,1,2 $ sowie den s-Boson-Erzeuger $ s^\dagger $ und die entsprechenden Vernichtungsoperatoren. Wir betrachten die 36 Kombinationen $ s^\dagger s $, $ s^\dagger d_m $, $ d^\dagger_m s $ und $ d^\dagger_{m_1} d_{m_2} $. Dieser Satz von sogenannten Generatoren bildet eine U(6)-Lie-Algebra (U für unitär). Zu dieser Algebra lassen sich mehrere physikalisch sinnvolle Unteralgebren finden. Diese werden mit U(5), O(6) (O für orthogonal) sowie SU(3) (SU für speziell unitär) bezeichnet. Diese drei Unteralgebren enthalten wiederum physikalisch relevante Unterräume:

$ U(6) \supset U(5) \supset SO(5) \supset SO(3) \supset SO(2) $

$ U(6) \supset SO(6) \supset SO(5) \supset SO(3) \supset SO(2) $

$ U(6) \supset SU(3) \supset SO(3) \supset SO(2) $

Oft werden die drei Unteralgebren U(5), SO(6) und SU(3) durch das sog. Casten-Dreieck grafisch dargestellt. Die Ecken entsprechen dabei diesen 3 Ketten von eingebetteten Algebren. Häufig enthält eine derartige Abbildung auch weitere Punkte, die mit X(5) und E(5) bezeichnet werden. Es handelt sich hierbei jedoch nicht um Algebren des IBM.

Angewendet auf Atomkerne entspricht das U(5)-Limit einem Vibrator, das SO(6)-Limit einem $ \gamma $-weichen Kern und das SU(3)-Limit einem Rotor.

Erweiterungen des Modells

Eine Erweiterung führt Bosonen mit höherem Drehimpuls ein, sogenannte g-Bosonen. Eine weitere Möglichkeit geht dahin, auch kompliziertere Wechselwirkungen als 2-Körperkräfte zu betrachten. Jedoch konnte gezeigt werde, dass beide Erweiterungen teilweise mathematisch äquivalent sind. Eine wichtige Erweiterung war die Unterscheidung von Proton- und Neutron-Bosonen. Diese Erweiterung wird auch als IBA-2 Modell bezeichnet. Zuletzt muss noch auf die Möglichkeit hingewiesen werden, auch einzelne Nukleonen mit Bosonen zu koppeln, z.B. bei ungerader Neutronenzahl wird dann das übrig gebliebene Neutron mit den Bosonen gekoppelt. Diese Erweiterung wird als IBMF bezeichnet, die Kopplung mit zwei ungepaarten Nukleonen als IBMFF. Die Berücksichtung von Fermionen führt auf andere sehr interessante Aspekte, z.B. Boson-Fermion Symmetrie, die sogenannte Supersymmetrie, welche auch in der Teilchenphysik eine große Rolle spielt.

Schriften

  • Arima, Iachello Collective nuclear states as representations of a SU(6) Group, Physical Review Letters, Bd.35, 1975, S.1070
  • Arima, Iachello The interacting boson model, Cambridge University Press 1987
  • Arima, Iachello Interacting boson model of collective states, Teil 1 (the vibrational limit) Annals of physics Bd. 99, 1976, S. 253-317, Teil 2 (the rotational limit) ibid. Bd. 111, 1978, S. 201-38, Teil 3 mit Scholten (the transition vom SU(5) to SU(3)), ibid. Bd. 115, 1978, S. 325-66, Teil 4 (the O(6) limit) ibid. Bd. 123, 1979, S.468-92
  • Arima, Iachello The Interacting Boson Model, Annual Review of Nuclear and Particle Science Bd. 31, 1981, S.75

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.