Claisen-Tiščenko-Reaktion

Claisen-Tiščenko-Reaktion: Aus zwei Aldehyden bildet sich ein Ester.

Die Claisen-Tiščenko-Reaktion ist nach den Chemikern Ludwig Claisen und V. Tiščenko benannt.

Normalerweise werden Carbonsäureester aus Carbonsäuren und Alkoholen durch saure Katalyse hergestellt. Es geht aber auch anders: Steht ein Aldehyd zur Verfügung, können Ester auch durch die Claisen-Tiščenko-Reaktion in einer Umlagerungsreaktion mit Aluminiumalkoholat als Katalysator hergestellt werden. Bei nicht enolisierbaren Aldehyden kann statt eines Aluminiumalkoholats auch ein Natriumalkoholat eingesetzt werden. Großtechnisch wird auf diese Weise Essigsäureethylester aus Acetaldehyd mit Aluminiumtriethanolat als Katalysator hergestellt.

Wenn man statt von einem Aldehyd von einem Gemisch mehrere Aldehyde ausgeht, entstehen in der Regel komplexe Gemische verschiedener Ester, die aufwändig getrennt werden müssen.

Mechanismus der Claisen-Tiščenko-Reaktion: Ausgehend von Acetaldehyd (R = CH3) entsteht Essigsäureethylester. Wenn R ≠ CH3 entstehen nur geringe Mengen des Ethylesters R-COOC2H5, es bildet sich hauptsächlich der Ester R-COOR.

Reaktionsmechanismus

Das Alkoholat lagert sich an zwei Moleküle des Aldehyds an und bildet einen cyclischen Übergangszustand.

Die Reaktion muss im Gegensatz zur Cannizzaro-Reaktion, bei der aus dem Aldehyd entsprechend Carbonsäure und Alkohol entstehen, zwingend in wasser- und alkoholfreiem Medium erfolgen.

Eine Tandem-Reaktion aus einer Aldol-Reaktion und einer Claisen-Tiščenko-Reaktion wird als Aldol-Tiščenko-Reaktion bezeichnet.

Claisen-Tiščenko-Reaktion: Aus ortho-Phthalaldehyd bildet in Benzol ein Lacton[1].

Innermolekulare Variante

Bei der innermolekulare Claisen-Tiščenko-Reaktion nicht enolisierungsfähiger Dialdehyde können sich Lactone bilden.

Einzelnachweise

  1. T. Sek, T. Tachikawa, T. Tamada, H. Hattori, Journal of Catalysis 217 (2003) 117-

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.