Bronze
- Seiten mit defekten Dateilinks
- Legierung
Als Bronzen werden Legierungen mit mindestens 60 Prozent Kupfer bezeichnet; soweit sie nicht Messinge sind, deren Hauptlegierungszusatz Zink ist. Die Sammelbezeichnung Bronze wird in der Regel nur zusammen mit dem vorangestellten Hauptlegierungszusatz verwendet. Als spezifische Bezeichnung ist Bronze, der historischen Wortbedeutung entsprechend, jedoch auch weiterhin gängig für Zinnbronze, die älteste technische Legierung überhaupt.
Etymologie
Die heutige Bezeichnung für die Legierung wurde im 17. Jahrhundert zuerst aus dem italienischen bronzo, später auch über das französische bronce erneut entlehnt. Die Vorgeschichte ist etymologisch unklar.[1] Das Wort wurde aber zuerst im 14. Jahrhundert aus dem Orient ins Italienische übernommen. Vermutlich kommt es vom persischen Wort birinj (birindsch), was einfach Kupfer bedeutet.[2]
Mineralische Grundlagen
Zu den in Mitteleuropa frühzeitlich entdeckten Kupfererzvorkommen gehört der im Harz anstehende Wolfsbergit (Kupferantimonglanz), bei dem das enthaltene Kupfer von Antimon, Arsen, Schwefel, Blei und Eisen begleitet wird; Elemente, deren saubere Abtrennung grundlegende metallurgische Fähigkeiten voraussetzt. Zinnerze wurden im Fichtelgebirge und besonders im Erzgebirge insbesondere als Kassiterit und als Zinnkies gefunden.
Zusammensetzung/Eigenschaften
Zinnbronzen
Im Bronzebereich des Systems Kupfer-Zinn bilden sich aus der Schmelze bei unterschiedlicher Zusammensetzung drei verschiedene Mischkristalle: Der α-Mischkristall entspricht dem des Reinkupfers, das ein kubisch flächenzentriertes Gitter ausbildet. Der Schmelzpunkt des Reinkupfers ist 1083 °C. Bei ca. 24 % Zinn liegt der β-Mischkristall vor, der ein kubisch raumzentriertes Gitter besitzt, bei ca. 30 % Zinn und darüber der ebenfalls kubisch raumzentrierte γ-Mischkristall. Zwischen den Mischkristallen α und β und zwischen β und γ bildet sich je ein peritektisches Teilsystem. Das technisch relevante Peritektikum α/β liegt bei 22 % Zinn und 798 °C. Bei 586 °C findet ein eutektoider Zerfall der β-Mischkristalle in α- und γ-Mischkristalle statt. Aus den γ-Mischkristallen können sich je nach Legierungszusammensetzung bei Abkühlung zwei intermetallische Verbindungen bilden: Die δ-Phase entspricht Cu31Sn8 und damit ca. 32,5 % Zinn. Sie bildet eine enorm große kubisch flächenzentrierte Elementarzelle mit 416 Atomen und weist eine sehr große Härte auf. Die orthorhombische ε-Phase entspricht Cu3Sn und liegt damit bei ca. 38,4 % Zinn vor. Im technisch relevanten Bereich entsteht die δ-Phase bei 520 °C beim Zerfall der γ-Mischkristalle in ein eutektoides Gefüge aus α- und δ-Mischkristallen mit 27 % Zinn. Ein weiterer eutektoider Zerfall der δ-Mischkristalle in α- und ε-Mischkristalle bei ca. 350 °C findet unter realen technischen Verhältnissen nicht mehr statt, da die Diffusion zu stark behindert ist. Zur Herstellung des Gleichgewichts wäre hier Kaltumformung und ein mehrmonatiges Glühen erforderlich.
Die tatsächlich entstehenden Gefüge sind vor allem bestimmt durch die große Diffusionsträgheit des Zinns, die bereits bei der Kristallisation aus der Schmelze die Einstellung des Gleichgewichts verhindert. Damit liegt in Zinnbronze nur bei Zinngehalten unter 5–6 Prozent ein Gefüge ausschließlich aus α-Mischkristallen vor, bei höheren Gehalten besteht es aus weichen α-Mischkristallen und dem harten α/δ-Eutektoid.
Durch den Zinnzusatz nimmt die Festigkeit der Legierung zu und erreicht zwischen 10 und 15 Prozent Zinn ein Maximum. Die Dehngrenze nimmt annähernd linear zu, wobei sie sich gegenüber dem Reinkupfer vervielfacht, und erreicht bei ca. 20 Prozent ein Maximum. Die Bruchdehnung beginnt, ausgehend von den hohen Werten des Kupfers, jenseits von 5 Prozent Zinn rapide abzunehmen und nähert sich annähernd exponentiell der Nulllinie, die zwischen 20 und 25 Prozent praktisch erreicht ist. Die Härte nimmt stetig zu, was sich bei höherem Zinngehalt nochmals verstärkt. Die Dichte nimmt pro 6 Prozent Zinnzusatz um 0,1 g/cm³ ab. Sie liegt bei 8 % Zinn bei 8,79 g/cm³.
Legierungen und Legierungszusätze
Zinnbronzen sind als Kupfer-Zinn-Legierungen genormt und werden aufgrund der grundsätzlich unterschiedlichen Anforderungen und Eigenschaften in Knetlegierungen (max. 9 % Zinn), die für die umformende Verarbeitung geeignet sind, und Gusslegierungen (9 % bis 13 % Zinn) gegliedert.[3] Darüber hinaus kommen noch sogenannte Glockenbronzen mit ca. 20 %, max. jedoch 22 % Zinn zur Anwendung.
- Phosphor reduziert Kupferoxid und verflüssigt damit auch die Schmelze. Zinnoxid wird zwar nicht reduziert, kann aber in der desoxidierten Schmelze leichter in die Schlacke aufsteigen. Bei Zugabe von Phoshor als Desoxidationsmittel, in aller Regel als vorlegiertes Phosphorkupfer mit 10 oder 15 % Phosphorgehalt, ist so zu dosieren, dass nach der Desoxidation noch mindestens 0,01 % Phosphorüberschuss in der Schmelze verbleibt. Gießstrahloxidation wird so vermieden, Gießbarkeit und physikalische Eigenschaften im Guss verbessert. Negativ wirkt sich Phosphor lediglich auf die elektrische Leitfähigkeit aus. Bei Gehalten von mehr als 0,1 % tritt Cu3P im Gefüge auf. Bei Lagerwerkstoffen kann dies erwünscht sein, bei Leitkupfer ist Phosphor als Desoxidationsmittel durch Mangankupfer oder eine andere phosphorfreie Vorlegierung zu ersetzen.
- Nickel, das die Entstehung eines zusätzlichen $ \vartheta $-Mischkristalls im Bereich um 9 % Zinn bewirkt, erhöht die Zähigkeit und verringert den Wandstärkeneinfluss auf die Festigkeit. Es kommt daher nur bei Gusslegierungen mit einem Anteil bis zu 2,5 % zum Einsatz.
- Blei bildet eine eigene Phase und liegt im Gefüge fein verteilt vor. Es verbessert Spanbarkeit und Gleiteigenschaften, erhöht jedoch die Warmbrüchigkeit. Es kommt daher mit 2 % bei Gusslegierungen für Lagerwerkstoffe zum Einsatz, bei Knetlegierungen mit 4 % nur im Sonderfall des Strang-, Band- und Drahtgusses, wo keine anschließende Warmumformung mehr erforderlich ist und das Produkt zerspanbar sein soll.
- Zink kann unter Umständen die halbe Menge Zinn ersetzen, es kommt aus wirtschaftlichen Gründen zum Einsatz. Es wirkt desoxidierend, so dass hier der Phosphorzusatz entfallen kann. Dies wird u.a. bei Legierungen für Kontaktwerkstoffe genutzt.
Eigener Normierung unterliegen die Schweißzusätze und Hartlote auf Kupfer-Zinn-Basis.
Weitere Bronzen
Enthalten Legierungen nur wenig oder kein Zinn werden, sie häufig „Sonderbronzen“ genannt. Ihre Bezeichnungen werden vom Namen des sie qualifizierenden, dem Kupfer zugesetzten Elements abgeleitet: Aluminiumbronze, Manganbronze, Nickelbronze etc. (siehe Übersichtstabelle unten). Berylliumbronze ist ein spezieller Kupferwerkstoff für funkenfreie Werkzeuge, der lediglich 2–3 % Beryllium und eine geringe Menge Cobalt enthält.
Bleibronze (auch Kupfer-Zinn-Blei-Bronze) ist eine Lagerlegierung mit 5–22 % Blei.
Rotguss zählt nicht zu den Zinnbronzen, ist damit auch nicht „Bronze“ im engeren Sinne, obwohl gelegentlich als „Maschinenbronze“, „Kanonenbronze“ und ähnlich bezeichnet. Es ist eine Legierung auf Kupferbasis, deren Eigenschaften weniger vom Zusatz an Zinn als von Zink, Blei und Nickel bestimmt werden.
Tabellenübersicht der Bronzelegierungen
Name der Legierung | Komponenten zu Kupfer | Eigenschaften | Verwendung |
---|---|---|---|
Guss-Zinnbronze | bis 22 % Zinn, vorwiegend 10–12 % Zinn, Dichte etwa 8,8024 kg/dm³ | elastisch, zäh, korrosionsbeständig | überwiegend als Formguss, bis 6 % Zinn kalt walzbar zu Blechen und Prägevormaterial (Medaillen. Münzen), Drahtziehen bis 10 % Zinn. Glockenguss (Glockenbronze: etwa 20–24 % Zinn), historisch ist Kanonenbronze, ebenso Klanginstrumente. Statuenbronze für Kunstguss (Kleinbronzen, Denkmale) |
Aluminiumbronze | 5–10 % Aluminium | seewasserbeständig, verschleißfest, elastisch, leicht magnetisch, goldfarben | Federblech, Waagebalken, Schiffspropeller, chemische Industrie |
Bleibronze | bis zu 26 % Blei | korrosionsbeständig, gute Gleiteigenschaften | Lagermetall, Verbund- und Formgusswerkstoffe, antike Münzbronze enthielt häufig Blei, dem nicht alles Silber abgetrieben wurde |
Manganbronze | 12 % Mangan | korrosionsbeständig, hitzebeständig | elektrische Widerstände
(in den USA trotz des in manchen Legierungen enthaltenen Zinkanteils von 20–40 % als manganese bronze bezeichnet, zum Beispiel bei einigen von Ampco hergestellten Werkstoffen) |
Siliciumbronze | 1–2 % Silicium | mechanisch und chemisch hoch beanspruchbar, hohe Leitfähigkeit | Oberleitungen, Schleifkontakte, Chemische Industrie |
Berylliumkupfer (Berylliumbronze) | 2 % Beryllium | hart, elastisch, giftig | Federn, Uhren, funkenfreie Werkzeuge |
Phosphorbronze | 7 % Zinn, 0,5 % Phosphor | hohe Dichte und Festigkeit | zähfeste Maschinenteile, Achsenlager, Gitarrensaiten |
Leitbronze | Magnesium, Cadmium, Zink (gesamt 3 %) | elektrische Eigenschaften ähnlich Kupfer, jedoch zugfester | Freileitungen, Starkstromanlagen |
Rotguss | Zinn, Zink, Blei (gesamt 10–20 %) | korrosionsbeständig, gute Gleiteigenschaften und Gießbarkeit | Gleitlager, Armaturen, Schneckenräder, Kunst |
Korinthisches Erz (corinthium aes) | 1–3 % Gold, 1–3 % Silber, manchmal wenige Prozent Arsen, Zinn oder Eisen | durch Patinieren schwarz färbbar | historischer Werkstoff für Statuen und Luxusartikel (Antike) |
Potin | französische Bezeichnung für Legierungen auf Kupferbasis. Potin gris ist als Bronzelegierung zu bezeichnen. Potin jaune ist aus Altmessing hergestelltes Gussmessing | Bezeichnung auch für keltische Münzbronze |
Geschichte
Zinnbronze ist ab der Mitte des 4. Jahrtausends v. Chr. zwischen mittlerer Donau und Kaspischem Meer belegt, z. B. für die Kura-Araxes-Kultur (Transkaukasien), 36. Jahrhundert: Beginn Frühbronze I auf dem Balkan.
Der bereits im griechischen bekannte Begriff wird auch mit Brundisium in Verbindung gebracht, dem lateinischen Namen des heutigen süditalienischen Brindisi, das in der Antike, zu Neugriechenland gehörend, eine Art Zentrum der Bronzeverarbeitung und des Bronzehandels war.
Die gewerbsmäßige Herstellung von Bronze dürfte zwischen 2500 und 2000 v. Chr. in Vorderasien begonnen haben. In China ist ebenfalls die Verwendung im 3. Jahrtausend v. Chr., spätestens während der Xia-Zeit dokumentiert.
Bronze gilt damit als eine der ersten, gezielt von Menschen erstellten und genutzten Legierungen, eine Leistung, die bereits gewisse metallurgische Kenntnisse voraussetzte. Die Zusammensetzung war jedoch oft noch von den eingesetzten Erzen abhängig; es ergaben sich Legierungen mit Arsen, deren negativer Einfluss auf die mechanischen Eigenschaften heute bekannt ist.[4] Auch bleihaltige Bronzen und – durch das verarbeitete Erz bedingt – solche mit Antimon wurden verarbeitet.
Die Bronzezeit, als Nachfolgerin der Kupferzeit, die ihrerseits die Jungsteinzeit ablöste, brachte Bronzewaffen, Gerätschaften und Schmuck (Bronzefibeln). Abgelöst wurde sie allmählich von der frühen Eisenzeit (Hallstattzeit). Bronze und Eisen wurden je nach Aufgabenstellung noch nebeneinander verwendet. Empirisch gelangte man jedoch zu kohlenstoffarmem Schmiedeeisen. Damit verlor die Bronze zunehmend an Bedeutung für die Herstellung von Handwaffen, knüpfte aber im Bauwesen und besonders bei Denkmalen an Erfahrungen und Nutzungen aus der Antike wieder an (römische Antike). Das frühe Mittelalter verlieh neuen Auftrieb, Glocken- und Stückgießer unterstützten die kirchliche und weltliche Herrschaft für einige Jahrhunderte, bis die Eisenverhüttung und der Eisenguss die Bronze ablösten.
Zusammenfassung
Die traditionellen Anwendungsbereiche von Bronzen
- Glocken und vergleichbare Klanginstrumente nichtchristlicher Religionen, Statuen von Lebensgröße bis zur Überdimensionierung und seit Erfindung des Schießpulvers Geschütze.[5]
- Kunstgegenstände (Kunstguss). Bekannt sind historische Bronzetüren, wie die Bernwardstür im Hildesheimer Dom
- Kleinbronzen, Gedenktafeln und gegossene oder geprägte Medaillen (Bronzemedaille bei sportlichen Wettkämpfen).
- klangstarke Musikinstrumente wie Schlagzeugbecken und Hi-Hat
- antike bis neuzeitliche Münzen, beispielsweise As.
Bronzen und Bronzelegierungen als Teil moderner Techniken
Kupfer-Zinn-Legierungen für unterschiedliche Techniken werden auch mit ebenso unterschiedlichen Legierungselementen den gestellten Forderungen angepasst.[6] Der Zusatz von Nickel erhöht bei Gusslegierungen die Zähigkeit, bei Knetlegierungen die Festigkeit, Blei ist unverzichtbarer Bestandteil aller Lagerlegierungen, im Gefüge als metallisches Blei ausgeschieden, stützt es die für Lager wichtige Notlaufeigenschaft. [6]
Ein weites Einsatzgebiet für Kupfer-Zinn-Legierungen ist der Maschinen- und Werkzeugbau, aber auch für Feder- und Kontaktelemente in der Elektrotechnik und Elektronik, z.B. in Schaltkreisfassungen mit vergoldeter Federbronze. Chemische und Nahrungsmittelindustrie nutzen die Korrosions- und Verschleißfestigkeit.
Zur Herstellung von Propellern und Schiffsschrauben für Seeschiffe sind klassische Zinnbronzen nicht geeignet, man setzt an ihrer Stelle Aluminium-Mehrstoffbronzen ein, die sich im Kontakt mit Seewasser kavitations- und korrosionsbeständig zeigen.
Ebenso, wie aus anderen Metallen und Legierungen Fein- und Feinstgranulate hergestellt werden - verbreitet als „Metallpulver“ bezeichnet (Kupferpulver, Aluminiumpulver)- so auch aus Bronze. Pyrophore Eigenschaften machen alle Metallpulver zum Bestandteil von Feuerwerkskörpern, wichtiger ist aber, dass sie die Technik des Pulverflammspritzens zur Herstellung dreidimensionaler Gegenstände ermöglichen. Durch zusätzliches heißisostatisches Verpressen (Sintern) werden hierbei Eigenschaften eines Metallmodells erzielt und damit bei der Fertigung von Prototypen und Kleinserien Zeit und Kosten eingespart.
Galerie von Verwendungen
- Der Giesser.jpg
Bildguss aus Bronze, ca. 1900
Bronze-Kunstguss eines Mörsers, unsigniertes Serienstück
Literatur
- Lexikon der Metalltechnik. Handbuch für alle Gewerbetreibenden und Künstler auf metallurgischem Gebiet. Redigiert von J. Bersch. A. Hartlebens Verlag, Wien/Pest/Leipzig, ohne Jahrgang.
- Bronze – unverzichtbarer Werkstoff der Moderne. Deutsches Kupferinstitut (DKI), Düsseldorf 2003.
- T. L. Kienlin: Frühes Metall im nordalpinen Raum: Eine Untersuchung zu technologischen und kognitiven Aspekten früher Metallurgie anhand der Gefüge frühbronzezeitlicher Beile. In: Archäologische Informationen. 27, 2004, S. 187–194.
- Informationsdrucke i15 und i25 des Deutschen Kupferinstituts (DKI), Düsseldorf 2004.
- Guss aus Kupferlegierungen. Aus dem amerikanischen von Dipl.Ing. Ernst Brunhuber, Schiele&Schön, Berlin 1986, ISBN 3-7949-0444-3.
Einzelnachweise
- ↑ Der Grosse Duden, Band 7, Etymologie, Bibliografische Institut AG, Mannheim 1963
- ↑ Kluge, Etymologisches Wörterbuch, W. de Gruyter, Berlin 1957, ISBN 3-11-005709-3
- ↑ DIN CEN/TS 13388 Kupfer und Kupferlegierungen – Übersicht über Zusammensetzungen und Produkte
- ↑ für Analysen früher Bronzen siehe T. L. Kienlin, Copper and Bronze During the Eneolithic and Early Bronze Age: a Metallographic Examination of Axes from the Northalpine Region,, Archaeometry 48/3, 2006, S. 453–468.
- ↑ Im Zweiten Weltkrieg wurden zahlreiche Glocken abgehängt, um Kupfer und Zinn für die Rüstung zu verwenden. Ein „Glockenfriedhof“ in Hamburg diente als Zwischenlager vor dem Schmelzofen. Bei Kriegsende befanden sich dort noch zahlreiche Glocken, die ihren Gemeinden zurückgegeben werden konnten.
- ↑ 6,0 6,1 Deutsches Kupfer Institut, DIN/EN Norm (alt DIN1705 und neu DIN EN1982)
Weblinks
Deutsches Kupferinstitut (DKI):
- Informationsdrucke:
- Website: