Stochastik

Erweiterte Suche

Die Stochastik (von altgriechisch στοχαστικὴ τέχνη stochastikē technē, lateinisch ars conjectandi, also ‚Kunst des Vermutens‘, ‚Ratekunst‘) ist ein Teilgebiet der Mathematik und fasst als Oberbegriff die Gebiete Wahrscheinlichkeitstheorie und Statistik zusammen.

Die historischen Aspekte werden im Artikel Geschichte der Wahrscheinlichkeitsrechnung dargestellt.

Überblick

Mathematische Stochastik beschäftigt sich mit der Beschreibung und Untersuchung von Zufallsexperimenten wie zum Beispiel dem Werfen von Reißzwecken, Würfeln oder Münzwurf sowie vom Zufall beeinflussten zeitlichen Entwicklungen und räumliche Strukturen.

Solche Ereignisse, Entwicklungen und Strukturen werden oft durch Daten dokumentiert, für deren Analyse die Statistik geeignete Methoden bereitstellt. Mit Hilfe der Stochastik kann man etwa die Wahrscheinlichkeit für Lottogewinne berechnen oder die Größe der Unsicherheit bei Meinungsumfragen bestimmen. Die Stochastik ist auch für die Finanzmathematik von Bedeutung und hilft mit ihrer Methodik beispielsweise bei der Preisfindung für Optionen.

Wahrscheinlichkeiten und Zufallsexperimente

Unter einer Prognose versteht man

  • ein Maß für die Unsicherheit zukünftiger Ereignisse,
  • ein Maß für den Grad an persönlicher Überzeugung (Bayesscher Wahrscheinlichkeitsbegriff), also letztlich eine Erweiterung der Aussagenlogik.

Angabe von Wahrscheinlichkeiten

Wahrscheinlichkeiten werden mit dem Buchstaben $ \ P $ (von frz. probabilité, eingeführt von Laplace) oder $ \ W $ dargestellt. Sie tragen keine Einheit, sondern sind Zahlen zwischen Null und Eins, wobei auch Null und Eins zulässige Wahrscheinlichkeiten sind. Deshalb können sie als Prozentangaben (20 %), Dezimalzahlen ($ 0{,}2 $), Brüche ($ {\tfrac {2}{10}} $), Quoten (2 von 10 beziehungsweise 1 von 5) oder Verhältniszahlen (1 zu 4) angegeben werden (alle Angaben beschreiben dieselbe Wahrscheinlichkeit).

Häufig treten Missverständnisse auf, wenn nicht richtig zwischen „zu“ und „von“ unterschieden wird: „1 zu 4“ bedeutet, dass dem einen gewünschten Ereignis 4 ungewünschte Ereignisse gegenüberstehen. Damit gibt es 5 Ereignisse, von denen eins das Gewünschte ist, also „1 von 5“.

Führt man ein Zufallsexperiment mehrmals hintereinander durch, so kann die relative Häufigkeit eines Ereignisses errechnet werden, indem man die absolute Häufigkeit, also die Anzahl geglückter Versuche, durch die Anzahl der unternommenen Versuche dividiert. Für eine unendliche Anzahl von Versuchen geht diese relative Häufigkeit in die Wahrscheinlichkeit über. In der Praxis wird die Anzahl der für eine annehmbare Übereinstimmung von relativer Häufigkeit und Wahrscheinlichkeit nötigen Versuche oft unterschätzt.

Wahrscheinlichkeiten Null und Eins ↔ unmögliche und sichere Ereignisse

Dass einem Ereignis die Wahrscheinlichkeit Null zugeordnet wird, heißt nur dann, dass dessen Eintritt prinzipiell unmöglich ist, wenn es nur endlich viele verschiedene Versuchsausgänge gibt.

Dies wird durch folgendes Beispiel veranschaulicht: In einem Zufallsexperiment wird eine beliebige reelle Zahl zwischen 0 und 1 gezogen. Es wird davon ausgegangen, dass jede Zahl gleich wahrscheinlich sei – es wird also die Gleichverteilung auf dem Intervall $ [0,1] $ vorausgesetzt. Dann ist, da es in dem Intervall unendlich viele Zahlen gibt, für jede einzelne Zahl aus dem Intervall die Eintrittswahrscheinlichkeit gleich Null, dennoch ist jede Zahl aus $ [0,1] $ als Ziehungsergebnis möglich.

Ein unmögliches Ereignis ist im Rahmen dieses Beispiels etwa die Ziehung der 2, also das Elementarereignis $ \{2\} $.

Ein Ereignis wird sicher genannt, wenn es die Wahrscheinlichkeit 1 hat. Die Wahrscheinlichkeit, dass ein unmögliches Ereignis nicht eintritt, ist 1 und es handelt sich um ein sicheres Ereignis. Ein Beispiel für ein sicheres Ereignis beim Würfeln mit einem sechsseitigen Würfel ist das Ereignis „es wird keine Sieben gewürfelt“.

Integritätsbedingungen, Axiomensystem

Die Wahrscheinlichkeit des Ereignisses, das alle möglichen Versuchsausgänge umfasst, ist $ 1 $:

$ \ P(\Omega )=1. $

Die Wahrscheinlichkeit eines unmöglichen Ereignisses ist $ 0 $:

$ P(\emptyset )=0. $

Alle Wahrscheinlichkeiten liegen zwischen einschließlich Null und Eins:

$ 0\leq P(A)\leq 1. $

Die Wahrscheinlichkeit des Eintretens eines Ereignisses und die seines Nichteintretens addieren sich zu Eins:

$ P(A)+P({\bar {A}})=1. $

In einem vollständigen System von Ereignissen $ A_{i} $ (hierfür müssen alle $ A_{i} $ paarweise disjunkt sein und ihre Vereinigungsmenge gleich $ \Omega $ sein) ist die Summe der Wahrscheinlichkeiten gleich $ 1 $:

$ \sum _{i=1}^{n}P(A_{i})=1. $

Erst dem russischen Mathematiker Andrei Kolmogorov gelang es, ein Axiomensystem zu erstellen.

Siehe auch: Kolmogorov-Axiome und Wahrscheinlichkeitsaxiome

Laplace-Experimente

Als Laplace-Experimente, benannt nach dem Mathematiker Pierre-Simon Laplace, werden Zufallsexperimente bezeichnet, für die die folgenden beiden Punkte erfüllt sind:

  • Es gibt nur endlich viele mögliche Versuchsausgänge.
  • Alle möglichen Ausgänge sind gleichwahrscheinlich.

Einfache Beispiele für Laplace-Experimente sind das Würfeln eines Würfels, das Werfen einer Münze (wenn man davon absieht, dass sie auf dem Rand stehenbleiben kann) und die Lottozahlen.

Die Wahrscheinlichkeit $ P $ eines Laplace-Experimentes berechnet sich nach

$ P(E)={\frac {\mathrm {Anzahl} \,\,\mathrm {der} \,\,\mathrm {f{\ddot {u}}r} \,\,\mathrm {das} \,\,\mathrm {Ergebnis} \,\,\mathrm {g{\ddot {u}}nstigen} \,\,\mathrm {Versuchsausg{\ddot {a}}nge} }{\mathrm {Anzahl} \,\,\mathrm {der} \,\,\mathrm {m{\ddot {o}}glichen} \,\,\mathrm {Versuchsausg{\ddot {a}}nge} }} $

Wahrscheinlichkeitstheorie

  • Zufallsvariable
  • Wahrscheinlichkeitsverteilungen (Gleichverteilung, Normalverteilung, Exponentialverteilung, Binomialverteilung, Bernoulli-Verteilung, Poisson-Verteilung, Mischverteilung)
  • Wahrscheinlichkeitsdichte

Kombinatorik

Kombinatorik ist ein Teilgebiet der Mathematik, das sich mit der Bestimmung der Zahl möglicher Anordnungen oder Auswahlen von

  • unterscheidbaren oder nicht unterscheidbaren Objekten
  • mit oder ohne Beachtung der Reihenfolge

beschäftigt. In der modernen Kombinatorik werden diese Probleme umformuliert als Abbildungen, sodass sich die Aufgabe der Kombinatorik im Wesentlichen darauf beschränken kann, diese Abbildungen zu zählen.

Spieltheorie

Die Spieltheorie ist ein Teilgebiet der Mathematik, das sich damit befasst, Systeme mit mehreren Akteuren (Spieler, Agenten) zu analysieren. Die Spieltheorie versucht dabei unter anderem, das rationale Entscheidungsverhalten in sozialen Konfliktsituationen abzuleiten.

Statistik

Statistik ist eine auf Mathematik basierende Methodik zur Analyse quantitativer Daten. Dabei verbindet sie empirische Daten mit theoretischen Modellen.

Weitere Begriffe aus der Stochastik, Beispiele

  • Zufall
  • Gesetz der großen Zahlen
  • Gesetz der kleinen Zahlen
  • Wahrscheinlichkeit
  • Erwartungswert
  • Stochastische Unabhängigkeit
  • Stochastischer Prozess
  • Markow-Kette

Siehe auch, Anwendungsbeispiele

  • Teilungsproblem
  • Ziegenproblem, auch als „Drei-Türen-Problem“ bekannt.
  • Formelsammlung Stochastik

Weblinks

Wiktionary Wiktionary: Stochastik – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.