Rekombinator

Erweiterte Suche

Rekombinatoren beziehungsweise Wasserstoff-Rekombinatoren sind Geräte, die gasförmigen Wasserstoff katalytisch mit umgebendem Sauerstoff zu Wasser oxidieren.

Als Katalysatormaterial wird hierbei zumeist Palladium verwendet, welches auf ein Trägermaterial, beispielsweise kleine Aluminiumoxid-Kügelchen aufgedampft wird.

Einsatz in kerntechnischen Anlagen

Siehe auch: Entstehung von Wasserstoff im Artikel Kernschmelze

Wasserstoff-Rekombinatoren werden unter anderem in Kernkraftwerken eingesetzt. In Normalbetrieb entstehen in einem Kernreaktor geringe, bei Unfällen mit Kühlungsausfall unter Umständen große Mengen an gasförmigem Wasserstoff. Bei Wasserstoff-Konzentrationen zwischen 4 und 75 Prozent in normaler Luft kann es zu Knallgasexplosionen (Wasserstoffexplosionen) kommen.

Die Wasserstoffexplosion am 28. März 1979 während des Nuklearunfalls im Kernkraftwerk Three Mile Island (USA) hätte möglicherweise mit Rekombinatoren verhindert werden können. Daher wurden unter anderem alle Kernkraftwerke in Deutschland verpflichtend mit Rekombinatoren ausgestattet. Wie eine Knallgasexplosion im Kernkraftwerk Brunsbüttel zeigte, nützen die in den Sicherheitsbehältern angebrachten Rekombinatoren jedoch nichts, wenn sich Wasserstoff innerhalb einer Rohrleitung des Reaktordruckbehälters entzündet.

Auch für Abklingbecken und Brennelementbehälter können Rekombinatoren verwendet werden, die dafür sorgen, dass der freigesetzte Wasserstoff zu Wasser abreagieren kann, bevor es zu einer explosiven Konzentration kommt.

Weblinks

Rekombinator zum effektiven Beseitigen von Wasserstoff aus Störfallatmosphären Patentschrift Forschungszentrum Jülich

Literatur

Inga M. Tragsdorf, Entwicklung und Untersuchung von Katalysatorelementen für innovative Wasserstoff-Rekombinatoren, ISBN 978-3893363841

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?