Paul-Falle
In einer Paul-Falle können kleine elektrisch geladene Teilchen, bis hin zu einzelnen Ionen, mittels eines elektrischen Wechselfeldes gespeichert werden. Gelegentlich wird sie auch als Quadrupol-Ionenfalle bezeichnet, was sich auf die Geometrie des verwendeten Feldes bezieht. Der deutsche Physiker Wolfgang Paul (1913–1993) erhielt für die Entwicklung den Physik-Nobelpreis 1989.
Theorie
Die Paul-Falle besteht in ihrer klassischen Bauform aus drei Elektroden: Einer Ringelektrode und zwei Endkappenelektroden. Diese haben hyperbolische Innenflächen. Zwischen Ringelektrode und Endkappenelektroden wird eine Wechselspannung mit einer Hochfrequenz (HF) von meist 1 MHz angelegt, die im Inneren der Falle ein elektrisches Quadrupolfeld erzeugt, das auf die Ionen eine zeitlich periodisch wechselnde Kraft ausübt. Je weiter sich die Ionen vom Zentrum der Falle entfernen, desto größer wird die speichernde Kraft. Die Bahnen der Ionen werden durch die Mathieuschen Differentialgleichungen beschrieben (benannt nach dem Mathematiker Émile Léonard Mathieu).
Eine Wolke von Ionen im Inneren der Falle erfährt in der Frequenz des Wechselfeldes abwechselnde Kräfte: Fokussierung in der x-y-Ebene (durch die Ringelektrode) bei gleichzeitiger defokussierender Kraft senkrecht dazu (z-Dimension), beim Phasenwechsel dann eine Fokussierung in z-Dimension bei Defokussierung in x-y-Ebene. Beide Effekte wechseln sich mit hoher Frequenz ab und erzeugen eine effektive Fokussierung in allen drei Dimensionen, also eine Speicherung.
Mechanisches Analogon
Ein anschauliches Modell nach Wolfgang Paul erleichtert die Vorstellung des Prinzips: Eine Kugel würde von einer ruhenden Sattelfläche herunterrollen. Rotiert die Fläche aber, kann die Kugel stabilisiert werden. Je weiter die Kugel sich vom Zentrum wegbewegt, umso steiler ist die Fläche und umso stärker ist die rücktreibende Kraft.
Lineare Bauform
Praktisch wird oft eine lineare Bauform der Paul-Falle bevorzugt. Hierzu werden vier metallische Stäbe verwendet, die zueinander parallel im Rechteck angeordnet werden. Die Stäbe bestehen jeweils aus drei Teilstücken, die voneinander durch Isolatorringe elektrisch getrennt sind. Sie werden nun analog dem klassischen Aufbau mit einem elektrischen Wechselfeld betrieben und erlauben eine Speicherung im Inneren des sich ergebenden Rechtecks. Diese Bauform ist einfacher und hat den entscheidenden Vorteil, dass sie an beiden Längsseiten eine Öffnung enthält, über die z. B. einfacher mittels eines Lasers zur Messung oder Kühlung der Teilchen eingegriffen werden kann, ohne die Feldgeometrie zu stören. Sie kann auch als Massenfilter eingesetzt werden (sogenannter Quadrupol-Massenfilter).
Verwendung
Die Paul-Falle stellt eine einfache Möglichkeit zur Speicherung geladener Teilchen dar. Da die Stabilität der Bahnen vom Masse-Ladungs-Verhältnis der Ionen abhängt, kann die Paul-Falle zum Beispiel zur Massenanalyse in Ionenfallen-Massenspektrometern benutzt werden. Weiterhin spielt die Paul-Falle bei den ersten Ansätzen zur Realisierung eines Quantencomputers eine große Rolle.
Außerdem möglich ist die Speicherung von neutralen Atomen und Neutronen durch Ausnutzung ihres magnetischen Moments. Die hierfür verwendeten Potentialtöpfe sind allerdings so flach, dass die Teilchen bei Raumtemperatur aufgrund ihrer thermischen Bewegung nicht gehalten werden könnten. Sie müssen mittels Laserkühlung auf eine Temperatur von ca. 1 K gekühlt werden und können erst dann ebenfalls gespeichert werden.
Siehe auch
- Penning-Falle
- Laser-Kühlung
Patente
- Patent DE944900: Verfahren zur Trennung bzw. zum getrennten Nachweis von Ionen verschiedener spezifischer Ladung. Angemeldet am 24. Dezember 1953, Erfinder: W. Paul, H. Steinwedel (deutsche Priorität 23. Dezember 1953).
- Patent GB773689: Improved arrangements for separating or separately detecting charged particles of different specific charges. Erfinder: W. Paul (deutsche Priorität 23. Dezember 1953).
- Patent US2939952: Apparatus for separating charged particles of different specific charges. Erfinder: W. Paul, H. Steinwedel (deutsche Priorität 23. Dezember 1953).
Weblinks
- Physik-Nobelpreis 1989 (Informationen der Nobel-Stiftung. Englisch)
- Deutsches Museum in Bonn (Mit Ausstellung zu Paul-Fallen und Elektronenbeschleunigern)
- Paulfalle, mechanisches Analogon