Parallelepiped
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Polyeder
Unter einem Parallelepiped (von griechisch επίπεδον epipedon „Fläche“; Synonyme: Spat, Parallelflach, Parallelotop) versteht man einen geometrischen Körper, der von sechs paarweise kongruenten (deckungsgleichen) in parallelen Ebenen liegenden Parallelogrammen begrenzt wird. Die Bezeichnung Spat rührt vom Kalkspat (Calcit, chemisch: CaCO3) her, dessen Kristalle die Form eines Parallelepipeds aufweisen.
Ein Parallelepiped hat zwölf Kanten, von denen je vier parallel verlaufen und untereinander gleich lang sind. Stellt man drei an einem Eckpunkt zusammentreffende Kanten als Vektoren $ {\vec {a}},{\vec {b}},{\vec {c}} $ dar, so ergibt sich das Volumen des Parallelflachs aus dem Betrag des Spatproduktes (gemischtes Skalar- und Kreuzprodukt)
Volumen
Das Volumen V ist das Produkt der Grundfläche G und der Parallelepiped-Höhe h, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V = G \cdot h mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G = \left|\vec a \right| \cdot \left|\vec b \right| \cdot \sin \theta (mit θ als Winkel zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec a und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec b ) und der Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h = \left| \vec c \right| \cdot \cos \alpha . Dabei ist α der Winkel zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec c und der Höhe h.
Das Volumen kann als Determinante einer 3×3-Matrix angesehen werden, welches man auch Spatprodukt nennt.
- $ V=\left|\det {\begin{bmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{bmatrix}}\right| $
Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha=\angle(\vec b, \vec c) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta=\angle(\vec a,\vec c) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma=\angle(\vec a,\vec b) die Winkel zwischen den Kanten. Dann ist das Volumen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V = \left|\vec a \right|\left|\vec b \right|\left|\vec c \right| \sqrt{1+2\cos(\alpha)\cos(\beta)\cos(\gamma)-\cos^2(\alpha)-\cos^2(\beta)-\cos^2(\gamma)}.
Der Flächeninhalt der Oberfläche ergibt sich aus der Summe der einzelnen Parallelogrammflächen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_O = 2 \cdot \left(\left| \vec a \times \vec b \right|+\left| \vec a \times \vec c \right|+\left| \vec b \times \vec c \right|\right) .
Anmerkungen
- Quader (alle Winkel 90°) und Rhomboeder (alle Kanten gleich lang) sind Sonderformen des Parallelflachs. Der Würfel vereinigt beide Sonderformen in einer Figur.
- Das Parallelepiped ist ein spezielles (schiefes) Prisma mit einem Parallelogramm als Grundfläche.
- Jedes Parallelepiped ist ein Raumfüller, das heißt der Raum lässt sich mit parallelverschobenen Exemplaren von P so überdecken, dass je zwei unter ihnen höchstens Randpunkte gemein haben.
Verallgemeinerung auf den n-dimensionalen Raum (n > 1)
Die Verallgemeinerung des Parallelepiped in den n-dimensionalen Raum heißt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n > 2 Parallelotop beziehungsweise n-Parallelotop. Das zweidimensionale Analogon des Parallelepiped ist das Parallelogramm.
Definition
Ein n-Parallelotop P ist das Bild des Einheitswürfels E unter einer affinen Abbildung. Der Einheitswürfel $ I^{n} $ ist eine Menge von Punkten, deren Koordinaten einen Wert zwischen 0 und 1 annehmen, das heißt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): I^n := \left\{ (x_1,\dots,x_n) \mid 0 \le x_i \le 1 \right\}\,.
Das Parallelotop P ist ein konvexes Polytop mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2^n Ecken. Für m < n sind seine m-dimensionalen Seiten selbst m-dimensionale Parallelotope.
Volumen
Eine affine Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f kann man schreiben als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(x) = A \cdot x + t , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A die Abbildungsmatrix und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t die Verschiebung ist. Das Volumen des Einheitswürfels ist Eins. Um das Volumen des Parallelotops P zu ermitteln, muss also untersucht werden wie stark die affine Abbildung des Volumen verändert. Da ein Volumen unabhängig von einer Verschiebung ist, steckt dieser Wert alleine in der Abbildungsmatrix. Indem man die Determinante dieser Matrix berechnet, erhält man auch den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\det(A)| , um den sich das Volumen ändert. Die Striche $ |\cdot | $ bezeichnen hier den Betrag. Multipliziert man diesen Faktor mit dem Volumen des Einheitswürfels, so gilt trivialerweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\det(A)| \cdot 1 = |\det(A)| , daher gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{vol}(P) = |\det(A)| ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A die Abbildungsmatrix der affinen Abbildung ist, die das Parallelotop Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P definiert.
Weblinks
Literatur
- Konrad Königsberger: Analysis. Band 2. Springer, Berlin 2004, ISBN 3-540-20389-3.