Mutarotation

Als Mutarotation (von lateinisch mutare, dt. ‚ändern‘) bezeichnet man die spontane Änderung des Drehwinkels einer Lösung eines optisch aktiven Stoffes vom Zeitpunkt des Ansetzens der Lösung bis zum Erreichen eines festen Wertes.[1] An diesem Punkt ist das thermodynamische Gleichgewicht erreicht. Ursache für die Mutarotation kann Epimerisierung oder eine sonstige asymmetrische Umwandlung sein.

Mutarotation bei Kohlenhydraten

Viele Kohlenhydrate sind optisch aktiv, d. h., sie drehen linear polarisiertes Licht um einen für jede Struktur spezifischen Drehwinkel. Löst man z. B. kristalline D-Glucose in Wasser, so beobachtet man im Polarimeter bei der frisch zubereiteten Lösung eine kontinuierliche Änderung des Drehwinkels, bis schließlich ein konstanter Wert erreicht ist. Die Geschwindigkeit der Gleichgewichtseinstellung ist temperatur- und pH-abhängig.

Ursache ist, dass Aldopentosen, Aldohexosen und längerkettige Kohlenhydrate (Zuckermoleküle mit einer Aldehydgruppe und fünf, sechs bzw. mehr Kohlenstoffatomen) in wässriger Lösung im Wesentlichen nicht offenkettig, sondern ringförmig als Halbacetal vorliegen, d. h., die Aldehydgruppe geht eine Bindung mit der vorletzten Hydroxygruppe ein. Hier entsteht ein neues Chiralitätszentrum und zwei mögliche Isomere (genauer: Diastereomere), das α- oder β-Anomer, die sich entsprechend auch in ihrem optischen Drehwinkel unterscheiden. Nun liegt die offenkettige Form mit der Ringform in einem dynamischen Gleichgewicht, das allerdings sehr auf Seiten der Ringform liegt. Weil bei jeder Ringbildung die α- oder β-Form entstehen kann, liegen also auch diese beiden in einem Gleichgewicht mit einer ganz bestimmten Konstante. Eine solche chemische Umwandlung, bei der die Konfiguration nur eines stereogenen Zentrums eines Diastereomers geändert wird, bezeichnet man als Epimerisierung.

Zum Beispiel liegt die Glucose im Gleichgewicht ihrer offenkettigen Form (0,02 % in neutraler Lösung), der α-D-Glucopyranose und der β-D-Glucopyranose vor.[2] Eine Lösung von α-D-Glucopyranose (Drehwinkel +109°) wird also durch kontinuierliche Ringspaltung zu einem Gemisch mit der β-D-Glucopyranose (Drehwinkel +20°), und der Drehwinkel der Lösung erreicht nach einiger Zeit, wenn das Gleichgewicht herrscht, den Wert von +52°.[3] Es liegt offensichtlich kein 1:1-Gemisch vor, das Epimerenverhältnis α:β ist vielmehr 36:64.

Mutarotation D-Glucose V.1.png
Mutarotation: D-Glucose-Moleküle liegen als cyclische Halbacetale vor, die zueinander epimer (= diastereomer) sind. Das Epimerenverhältnis α:β beträgt 36:64. In der α-D-Glucopyranose (links) steht die blau markierte Hydroxygruppe am anomeren Zentrum in axialer Position, in der β-D-Glucopyranose (rechts) hingegen steht die blau markierte Hydroxygruppe am anomeren Zentrum in equatorialer Position. Die offenkettige Form der Aldose mit der freien Aldehydgruppe steht in der Mitte. Nur 0,02 % der D-Glucose-Moleküle liegen so vor.

Andere Beispiele

D-Gluconsäure ([α]20D = −6,72°) liegt im Gleichgewicht mit γ-Glucono-1,5-lacton ([α]20D = +67,8°) und δ-Glucono-1,6-lacton vor ([α]20D = +63,5°).[4] Im Gleichgewicht liegt die optische Drehung bei +12°.[5] Die Gleichgewichtseinstellung erfolgt in diesem Fall über die Lakton-Bildung.

Einzelnachweise

  1. S. Ebel, H. J. Roth (Herausgeber): Lexikon der Pharmazie, Georg Thieme Verlag, 1987, ISBN 3-13-672201-9, S. 450.
  2. Albert Gossauer: Struktur und Reaktivität der Biomoleküle, Verlag Helvetica Chimica Acta, Zürich, 2006, ISBN 978-3-906390-29-1, S. 322–324.
  3.  Reinhard Mattisek, Gabriele Steiner, Markus Fischer: Lebensmittelanalytik. 4. Auflage. Springer, Berlin 2010, ISBN 978-3-540-92205-6, doi:10.1007/978-3-540-92205-6.
  4.  K. Rehorst: Zur Kenntnis einiger Oxy‐säuren der Zuckergruppe, I.: d‐Zuckersäure und d‐Glykonsäure. In: Berichte der deutschen chemischen Gesellschaft (A and B Series). 61, Nr. 1, 1928, S. 163–171, doi:10.1002/cber.19280610126.
  5. W. Bähr, H. Theobald: Organische Stereochemie. Springer-Verlag, 1973.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.